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ABSTRACT: Primarily for applications in the field of digital image process-—
ing, the mathematical concept of information density on finite random func-
tions is defined and some properties are extracted. The idea is to localize
the global information content at the individual points in presence of de-
pendences between points. It turns out that the information density is a
nonnegative value defined and computable on each point, and that the global
information content of the whole random function is the sum of the informa-
tion densities of all points. Based on these concepts, an edge-detection al-
gorithm is outlined.
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1. INTRODUCTION

In digital image processing, pictorial information is generally represented
as arrays of grey values [1]. The images modeled in this way are discrete,
and the grey values representing the brightness or luminance of the point

are quantized; For the solution of basic image-processing problems such as
scale change, rotation, and requantization, this representation is a good
approach. For more sophisticated image—processing functions, it may be con-
venient to represent images in a stochastic way. Images can be modeled as
arrays of random variables called discrete random fields (see Appendix A).
This approach is appropriate in image-processing functions such as image com—
pression, noise filtering, halftoning, edge detection, and in most recogni-

tion functions.

Roughly, human perception of an image differentiates between two kinds of
information. The first is present at the edges or contours. The second is the
texture, i.e., large areas devoid of significant detail. Texture representa-
tion is possible using only few parameters [2], whereas contours muét be
treated more carefully. Pattern recognition and image understanding (or their
preprocesses) begin with an image modeled as an array of grey values. As a
first step, this image must be transformed into a list of contours and tEXf
ture as the first level of abstract image representation. For ome part of
this task, a reliable edge—detection or contour-finding algorithm is required.
In further steps, recognition will proceed to higher abstractions, but ini-

tially we are only interested in this first preprocessing step [3].

As a part of probability theory, an attempt is made to apply information

theory to images. This information content of an image is mainly concentrated
along the contours, because the local information is high when the prediction,
given some other points, is bad and vice versa. The concept of information in

communication theory as introduced by Shannon with a sender, a noisy channel




and a receiver is not very useful here, as it implies concepts like causali-
ty, etc. which do not have any meaning for images. Instead, we start with

a model of prediction, find the probabilities, and take the information as
the negative logarithm of the probability. (See Appendix B for more details.)
The probabilities are given as joint probabilities, and individual image
points are usually dependent on one another. Our intuitive understanding of
images makes it desirable to have an expression for the local information
‘density at each point in the image, in addition to the global information
content of the whole image and the marginal information content of subimages.
In Section 3, such a local information density is defined. The main result

of this work is expressed in formula (6).

Based on this definition, an algorithm to detect luminance edges on a grey-
level image can be implemented. The information density at a point can be
thresholded to detect an edge point. To compare different edge—detection
algorithms, one has to consider the requirements for a good edge-dection
algorithm. According to [4], three criteria can be stated: 1) The detected
parts of edges or contours should be connected (criterion of continuation).
2) The lines representing the edges or contours should be thin (criterion of
thinness). 3) The edges or contours should be in the right place (criterion
of correct location). As another important criterion, the sensitivity toward
noise should be mentioned. For the time being, we are not concerned with
testing these criteria, but they should be borne in mind when talking about
edge detection and contour finding. The main difficulty of the information-
density approach is not the definition of information density, but the model
of prediction (i.e., the stochastic model of the image). Whether the algo-
rithm is good with respect to these criteria depends mainly on the stochastic

model chosen.

Edge detection is one of the most important steps towards image recognition
and image understanding. Typical applications are found in character recogni-

tion, where the connections of the contours are important, and automatic



inspection of printed circuit boards, where apart from the connections, the
main problem is the small differences in grey values between foreground
and background, so that noise plays an important role. The problems and the

state of the art in the field of edge detection today are surveyed in [3].
2, RANDOM FUNCTIONS AND MODELING OF IMAGES

Random functions (also called stochastic functions, random processes) are
widely used in physics, but they can also be applied to image processing.
Some reasons for modeling an image as a random function are given in Appen-—

dix A.
2.1. Concepts of probability theory

Given a probability space (Q,.f, P), where © is a set, £ a o-algebra over
Q, and P a normed measure on £, a random variable £ is a measurable

function
£ (2,04, P) = (R, B,

where TR is the set of real numbers, and 98 the Borel o-algebra over R. A

random variable & is defined by its distribution function

Fg(x) = P(E < %).

An important concept in probability theory is the concept of dependence.

Two events Ai and A2 in A are independent if P(Al A AZ) = P(Al)'(AZ). The
conditional probability of the event A, given the event A, is defined as

i 2

P(A1 A_Az)
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ally independent given the event A3 (with P(A3)'> 0) if

P(A, A A [A)) = P(A|4)) R (A, [A)).

where P(AZ) > 0 is assumed. The two events A, and A, are called condition-

2.2. Random functions

We define a random function £ as a set {Et]t € T} of random variables €
with the index set T. Instead of this definition, equivalently it can be

said that a random funetion & is a function
E i (Q.4,B) xT > (R, @B), L) Et(w),

where the probability space (f,.f, P) must be arranged so that all point-—
probability spaces (Qt,dﬂ , P.) are contained in (Q,-4Z, P). (This can be
forced by taking the product of all Rt and Jig.) The dependences of two

points Et and Etz are modeled in the probability distribution P.

1
We do not assume any structure on the set T, Later, we can give the set T
different structures. To treat Markov chains, T must be totally ordered.
Discrete images need a relation expressing that two image points are neigh-
bors. But here, we wish to state that in the basic definition a random func-
tion is an unstructured set of random variables with a given joint probabi-
lity distribution P.
2.3. Image models
Mathematically modeled, an image is a function

B:R X Ry * G, fx:3) > 8= BiE.¥),

and the two sets RX and Ry are usually intervals of the set R of real



numbers or of the set Z of integers. If they are intervals of R, the image
is called continuous, and if they are intervals of Z, the image is called

discrete [1].

For deterministic images, the set G 1is also an interval of R or Z. If
G 1is an interval of Z, the image is called quantized. The numbers in G
represenf the different grey values possible for image points. The value

B(x,y) can be interpreted as the brightness or luminance at (x,y). A dis-—

crete deterministic image is nothing but an array of values of G.

A stochastically modeled image is a random function with a two-dimensional
set T. This means that G is a set of random variables. The value B(x,y)
will be interpreted as the probability distribution of the brightness of
the image B in the point (x,y). If all possible random variables in G
only take values-in a finite subset of R, the image is also called quan-

tized.

The deterministic model is a special case of the stochastic model, since
each point can be said to have a probability density function of the form
of a 6~functioﬁl Each stochastically modeled image is a weighted (by its
probability) set of samples, and each sample is a deterministically modeled

image.
2.4, The modeling power of stochastic images

A stochastic image is defined as a random function with index set Rx x Ry.
This index set has a topological structure, i.e., a neighborhood relation
between points. The points close together seem to be highly correlated (see

Appendix A). We call these dependences topological dependences. Topological

dependences over neighborhoods with a radius of 20 pels and more are normal



in image processing. But there are also dependences between parts of an
image far away from each other, which we sﬁall call congruences. (We have

an image of a train in mind where all wagons may look the same.) In natural
images, the congruences are of no importance. But this is not true for arti-
ficial images such as geometrical drawings or text. AIl parts of a line are
congruent to all other parts of the same line. And all letters "A" in a
printed text are more-or—less equal, independent of where they occur in the

text.

In many image-processing tasks, the stochastic image model may help to
develop much more effective algorithms for halftoning, image compression,

edge detection and recognition.
2.5. The relation between random function and sample

In image processing, an image is usually given as a saﬁplé and not as a
random function. The question is how to estimate the random function from
one sample (or from a small set of samples). We do not wish to treat all
known possible approaches to solve the estimation problem, but we shall add

some remarks about this problem from the image-proceséing point of view.

With a topological model of dependences in mind, one can estimate the
dependences. Given some image-processing environment (scanner, printer and
their respective resolutions, etc.), one can experimentally determine the
topological dependences for a class of images (the class of text images,
the class of-line—art images, the class of natural images). Especiallj, one
can measure the "strength" of the dependence for a given distance. Here,
one is not concerned with the image data of a special image, but with the

topological structure of the index set. From the given point-probability

distributions Pt’ one estimates the joint-probability distribution P. One

approach is to take Markov chains generalized to two-dimensional index sets.



One also has to estimate each point-probability distribution P Normal
distributions (also called Gaussian distributions) are often used, since
among other things; they have the following properties ([51, pp. 22-24):

1) They are uniquely characterized by the expectation and the covariaﬁce.

2) The concepts of independence and uncorrelatedness are equivalent. 3) The
marginal distributions and the conditional distributions are also normal.

4) Under a nonsingular linear transformation, a normal distribution becomes

an easily calculable normal distribution.

We cannot give more hints on how to estimate an image as a random function,
but it is a very important task in image processing. Often, image—processing
algorithms can be considerably improved by taking better stochastic models,

but a lot of research has still to be done in this field.

3. INFORMATION ON RANDOM FUNCTIONS

In this section, we shall define the global information content of a finite
random- function {gtWt e T}, and localize it at the points Et. We assume a
random function £ and one of its samples s to be given. The information
content of £ is here always measured with respect to the given sample s.

3.1. Concepts of information theory

Given the probability space (Q,.f, P), the information content I(A) of an

event A ¢ A is defined by

I(A) = -log P(A).



The information content I(E) of a random variable £ with respect to a sample

s 1is defined by
E(E) = I(& = 8) = =log P(E = s). _ (1)

The information content of a set of events {Ajij € J} is defined as the
joint.informatidn content 1(52} Aj). It is easy to see from the definitions
that I(A) 2 0 and I(A) = 0 only if P(A) = 1. The information content of an
event A depends only on the probability of A and on no ofher properties
of A. The information content I(£) of a random variable with respect to the
sample s depends only on the o-algebra and thé sample s but not on the

value £(w) in R. .

Given a finite random function {£t|t € T} and a sample {stit € T}, we use

some abbreviations to simplify the notation. We write P(S) and I(S) for

oy = o) a1y -0

I(tl,tz) for I(it = St) and I(Etl

t.)' In the same way, we write I(t) and
= Stl A Etz = stz), and so on.

3.2. Localization of the information

In the case where all points of {Et[t € T} are independent, the information
can easily be localized. The joint probability P(T) is the product of all

point probabilities P(t), and the joint information content I(T) is the sum
of all point information contents I(t). But dependenees connect the differ-

ent points, and joint information is not the sum of the point information.

We request that the information density JT(t), i.e., the localized informa-
tion, on a random function {Et]t € T} satisfies the following two require-

ments:



1) JT(t) 20 forall £t e,

2) E: Jooe) ==T ()
'1‘ .
teT
The information density must reflect the coupling between points by depen~
dences. So we assume that the coupling between one point t and the rest
of the points in T can be divided into coupling between the point and
no other points,'the point and one other point, the point and two other

points, and so on. This concept leads to the definition

I(S) = Ez D(S") : (2)

for all S ¢ T. We interpret the terms D(S') as coupling terms. This defini-
tion was inspired by the concept of relative information ([61, pp. 450-451).
Since P(¢) = 1, we get D(¢) = I(¢) = 0, D(t) = I(t) and

D(tl,tz) = I(tl,tz)'— I(tl) = I(tz). The term D(tl,tz) is the negative
relative information. These coupling terms D(S') are now assumed to belong
in equal parts to all points of S§', and the information density.JT(t) at the

point t 1is defined as

1
JT(t) = E: TEH'D(S)’ (3)
: teScT .
where the sum goes over all subsets of T containing t. It can easily be
seen that égs JT(t) must not be equal to I(S) except for the independent
case, because points in T but outside S may have an influence in JT(t).

But for § = T, they are equal because no points outside T are involved.
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Theorem:

(M = ), 3.6 ) i
Lel

Proof:

L = ) Y s SFoF =T D(8) = ) IslgT D(S) - I(T)

teT teT Sc<T A= ScT teS ScT
tes S=d S=z¢

It is a question whether the two assumptions expressed in formulas (2) and

(3) are good assumptions (see Appendix B).

3.3. Calculation'of the information density

The information density JT(t) is defined via the auxiliary coupling terms
D(S). We shall now express the information density of a point with the

given information I(S).

The transformation from the D(S) to the I(S) is linear and nonsingular. The

inverse transformation is calculated in the following theorem.

Theorem: ; s

Al (-1 I81- I8 151y, . (5)
§'cS '
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Proof:

I(s) = E: E: (-l)ls!l_lS“II(S") must be shown.

S'cs §"cS!
z (_I)IS'I—IS"II(S..) = Z (_DIS‘!-!S"II(S,.)
SR §"cS'cs
e el PPmes L D ey O enlt T
S"CS S"CS ICS ) S"CS S"CS ICS =
|S| —lan —_lan lS[—[S"] _lan
= ) HEy Y ('Si_{g..})enk Gl QS' - ')(-1)“
S'"cs k=[s"| s"cs k=
Is|~]s"|
Is|=|8"| k |S|=18"|-k
=y e ( )(-1) D)
575 kZO k
= Z (85~ 1)'|S"]S_"|= I(S).
S"CS .

With the inverse transformation shown in formula (5), the information
density JT(t) defined in formula (3) can be expressed in the terms I(S).

As a preceding step, we prove the following Lemma.

Lemma:
: n-s-1 k '
1 1 B - (=1) n-5s-1 %
n [o- ])_' EE s +k+ 1 ( k ) for all Ui = B
5 k=0
Proof:
We set

n=s-1

k
Bl oy o (1) R
! ‘n(n-1)’ B Z 5+k+1( k )




We prove An(O) = Bn(O):

Now,

Now,

B_(0)

n=1 (-l)k

kE+ 1

g =
- O

(::1 = ) : n-1 (_1)k
S

1 s

12

{n =

15

. k+1ki(n-k-1)!

g

1]

=R

(B + 1)iG@ =k = 1);

(G Eevter)-1)--3a -0

>
Ah(O) forn >-1.

1 =l n
- E.éi%(k %

we prove An+l(s + 1) = An(s) - An+1(s):

k
1) (-1)

- (a3 £ 1)1t - 8)1 : 1o o st = g)l 1
An+1(s o An(s) = (n + 1)! n-— s n?! n-s
1 f(s+1)!@=-9)!-(n+1)+ sia- s)!)
n .5 (n+ 1)!
i SelH ~ s)! LRtk Seg i Of - Sa o0 L4
n-s (n+ 1)! gs n)) 5 (n + 1)! n+ 1 (n A'11+1
we prove Bn+1(s + 1) = Bn(s) - Bn+l(s):
(n+l)—-s-1 -k
E GE Gkl =8 el
anl(S) + Bn+1(5 +1) = . SiE ol ( ke ).+
(n+l)=(s+1)-1 (—l)k

-+

n—s
éi%'-

n=s

(s +1) +k +1

((n+1)—(s+1)—1

)

(s).
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=r’is “D* fa-s-1) B (0¥ (a-s-1),
s+ k+1 k=l s+ k+1 i

k=0 k=0
e e (n e 1) S G (n S 1) -
e Pt S k k;%;I) sk +.2 k
= (—1)k e e N jél S0 1) n=8'=1
T & g+ o+ 1 k et S+ k + 2 k

-s=1 .
=2 (-1) n =g = 1) -
_Z 5+k+1( 5 )—Bn(s).

This proves with induction An(s) = Bn(s) for all n > 0 and all s with

0 < s < n. |

With this Lemma, we can express the information demsity JT(t) with the

information terms I(S).

Theorem:
L 1
() = = Z ——=—— I(tS) (6)
T |T| 2 |T] - 1 :
ST\{t}( = )
Proof:
Joe) = Ej T%ﬁ‘ E: (—1)IS|_IS l1(5')
teScT S'cS
= Z 5 Z % (_1)|S!“'IS |
STeT §'cScT
teS
- Y ) A enlPEEl,
SHET: S'cScT
tes'! -
+ LEae o e

S'cT\{t} StcseT\it!)



14

IT| =0 3
% : 1flT] = 18| k-15"]
4o g sy ,IE( k—lSW)ﬁi) ;

tef'cT k=|8
|T|-1
1 FO =8 =k k-|8! f+1
+ EE LES) e ( e ) &
S'cT\{t} k=¥5'l Bt s la
£ E: 2 IT]—Is"[-1 t=13" L i) = s
f I1(s"u{t})) [S"] + 1 + k k &
S"eT\{t} k=0 :
+ I(s') T EE gyt PRl = s] =5
Z [ST] + k + 1 k
S'cT\{t} , k=0
|T|=]8"
(1)
- TCSYU{El) = I(5') :
s'c;\{t}( ) Z_: ST ER
-(IT] = 1B = 1) 1 1 - :
2 e st L E(BUE]) & I(S))-
e (S (e d
P(Su{t})

With I(Su{t}) - I(S8) = -log P(Su{t}) + log P(S) = -log P(3)
-log P(t|S) = I(t]S). &

As a side effect, we have proven the following result:

Corollagz:
JT(t) =0 tor all t e T:

Proof::

In formula (6), we see that it is only necessary to prove I(t|S) > 0, but

this is clear because 0 £ P(t[S) =lin B
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With this Corollary and formula (4), we have proven that the information
density JT(t) has the two properties we wanted it to have in Section 3.2,
and with formula (6), we are able to express the information density without

the help of the auxiliary coupling terms D(S).

In the development of formula (6), no use of a structure on the index set

T is assumed. The index set T 1is nothing but a set.

We now give some remarks on the interpretation of formula (6). The infor-
mation density is not the conditional information content of point t given
the rest of the points, but is a weighted sum of the conditional information
content of point t given all subsets of points outside t. One can define

the average over all subsets to a given cardinality Kk,

T 1
E () = mere ﬂ
K

I(t]S)
ScT\{t}
S| = k

and the information density JT(t) is the average over all |IT| cardinalities
from 0 to |T| - I

|'E|=1
1 T
J () = — E (t),
T |T| ézg k

where not each subset, but each cardinality has the same weight. The infor-
mation density is not I(t) as in the independent case, and not I(t[T\{t})
as one may have expected, but both values occur in the weighted sum over the

.II - B

Ek(t),

4. CONCLUSIONS

We have defined the information density of a finite set of random variables.

The definitions are general, but we had especially applications in image

processing in mind. As expected, the information density depends on the
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stochastic model used to describe an image. The important remaining problem

is to find better models to describe the stochastic dependences of an image.

The information density satisfies the two requirements desired, that it is
never negative and that the global information of the set of random variables
is the sum of the infbrmation densities of all points. The definition we gave
does not assume any structure as an ordering relation or a distance func-

tion.

The intent of this report is mainly to define the concepts and to solve the
general mathematical problems. The work shown here can be the basis for
further efforts in applying the information density to several image-pro-—
cessing tasks. In particular, an edge-detection algorithm can be developed
based on this concept. The contours can be found by a threshold approach or

by a grey-tone representation of the information density of the image.
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APPENDIX A
REASONS FOR STOCHASTIC IMAGE PROCESSING

There are three main reasons why an image should be modeled as a random
function. The first-reason is the modeling of noise which is always present
in an image. Secondly, an image is not sensitive in some wrong points. And
last but not least, the dependences (or correlations) between different
points of an image are enormous. (The data-explosion problem demands good

compression algorithms which reduce these redundancies.)
A.1. Noise in imagéé

There.is only very little knowledge on the deterministic side of noise., With
the known and measured parameters, noise can be estimated as a random func-—
tion. An important impulse to the theory of random functions (random pro-
cesses) has been the need to develop a model of noise and noise-like physi-
cal systems such as Gaussian white noise and Brownian motion. We can con-—
clude that, because of the presence of noise in all images, an image should
be modeled as a random function if noise 1is significant; In deterministi-
cally modeled images, there is no control over noise. Image restoration of
images distorted by noise is based on the stochastic image model (Wiener

filtering).
A.2. Patterns in an image

In an English-language sentence, each "bit" may be important, as one can see
from the following two sentences: "I like money' and "I like honey". Images

are much less sensitive. Very different bit patterns may show the same image

for the human observer. For an image, printed with some hundred pels per
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inch and seen with normal observation distance, not the effective_local bit
pattern is important, but the more global distribution of black points
because of the finite aperture of our eyes. This effect is demonstrated

in Figs. Al and A2. With the same observation distance but with bigger print

dots, the difference can be seen.

Figure Al. Two different bit patterns showing the same image..

The property of being the same image depends on the receiver of the image.
Seen with a microscope, the two images are different. Also for a program ~

working on pel level, the two images are not the same, either.

The effect shown above can be modeled in terms of randem functions. Not the
luminance of one image point, but the integrated value over some neighbor-

hood is important for the eye of the human observer.
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S|

part with

Figure A2. Enlarged part of the images in Fig. Al:

a) corresponds to the image

b) to that on the right.

the eye scaled by a factor 16.

on the left in Fig. Al,
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A.3. Image point correlations

The dependences of the image points on the points in a neighborhood are
plotted in Figs. A3 to A6. The same image as in Fig. Al was used to
determine the correlations. The image was uniformly requantized (histogram
equalization) to get uniform distribution of all grey values in the image.
In the next step, the occurrences of pairs of grey values for all pairs of
image points with a given distance of d pels were counted. We plotted the
correlations for pairs in the same line of the image with the distances

d =1, 4, 16, 64. The plots show a high peak in the diagonal. This can

be interpreted as a high probability that two points have more or less the
same grey value, when they are close together. These correlations can be
modeled by the probability theoretical concept of dependence. The reason
why the diagonal is not so dominant on the left side of the plots comes
from the histogram equalization, where gaps between grey values are created

to force the image into uniform quantization.
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Figure A3. Correlations
"for the distance d = 1
pel.

Figure A4, Correlations
for the distance d = 4

pel.
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Figure A5. Correlations
for the distance d = 16
pel.

Figure A6. Correlations
for the distance d = 64

pel.
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APPENDIX B
SOME REMARKS TO THE DEFINITION OF INFORMATION

We have discussed random functions with some of their image—processing appli-
cations. In order to speak about information, two systems are necessary which
communicate in some way. The information content is a measure for the content
of a message. It is usually measured in bits. We are interested here in the
information content of an image. The message in this case is a discrete
quantized image, the sender is not important, and the receiver is the human

observer or a computer program processing this image.

There are two aﬁproaches to measure the information content of an image. One
can directly count the number of bits necessary to store or generate the
given sample of the image. But one can also define the information content

of the sample via the probability distribution of the image as a random func—

tion. (With optimal compression, both approaches result in the same value.)

Finally, we are interested in how it is possible to localize the information
content of a random function in general. The information content seems to be
a property of a sample with respect to a random function. We briefly discuss

the assumptions in the definition of information density given in Section 3.
B.1l. Information as counted bits

‘An image of the size Nx b Ny points with NG grey values can be stqred in

NX.- Ny - log NG bits. To take this value as the information content is not
a good solution, because it does not depend on the content of the image. An
image stored in this form contains many redundancies that can be removed by

compressing the image. The information content of an image is then defined
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as the number of bits necessary to store the compressed image. This way leads

to Shannon's information theory.

A necessary remark must be made. For each specific image, it is possible to
give an algorithm in which this image 1s compressed to one bit. The whole
image is then stored in the decompression algorithm so that the algorithm
only has to know whether or not it is the specific image. This is a message
possible in one bit. From this point of view, a definition of the information
content of an image which uses the concept of all possible compression algo-

rithms has no sense.

As we have described, a computer program can generate an image. This idea
can be used to define the information content of an image. The information
content of a deterministically modeled image is the length of the shortest

program which produces this image without any input [7].
B.2. Information from probability theory

If the message is an English-language sentence, the frequencies of ‘the
letters of the alphabet are known. But it is impossible to count the occur-
rences of all images. One idea is to count the subimages of a certain size
and form. With this, we are in the midst of finding the stochastic descrip-
tion for the class of all images. We see that it is a problem to model the
stochastic behavior of an image. Now let us imagine that we have a stochas-

tic model for the class of images in which we are interested.

The definition of information in this section depends on the probability
distribution of the model given. One can only speak about information with

respect to a stochastic model. In the last section, we showed how to
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compress a specific image to ome bit. This compression algorithm is only
reasonable if the image is frequently received. The probability of occur=
rence of this image must be around 0.5. In image processing, the stochastic
model depends on the special problems to be solved therewith. If the class
of iﬁages contains mainly scanned text pages-of a book, the statistics have
to reflect this knowledge. Information is, so to speak, only defined with
respect to statistics in the same way as the optimal compression [8]. Infor-
mation is nothing more than the negative logarithm of the probability, and
the main task is the definition of useful stochastic models for important

classes of images. Here, good solutions are not yet available.
B.3. Local information

Information on a set of random variables is not a local property because of
the various dependences. From the mathematical side of information theory,
some concepts such as conditional information, information gain, and rela-
tive information are known [6]. These concepts are closely related. The
relative information is the negative information gain from the independent

to the dependent cases of two random variables.

The generalization of the concept of relative information and the property
of information to be additive led us to the definition of formula (2). The
different coupling terms D(S') are treated as independent parts of the

information I(S), and independent information can be added. This remark is
not a proof of formula (2), but it is a clue to the interpretafion of the

terms D(S').

In the definition of relative information, an interpretation can be given

([61, p. 451) that the relative information is the amount of information

about one random variable contained in the other. Because of the symmetry
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of this definition, the relative information can be distributed to both
random variables in equal parts. From here, we stated formula (3). We inter—
preted the terms D(S') as the symmetrically distributed information belonging

to each point in S'.

With the two assumptions stated in formulas (2) and (3), we were able to
develop formula (6) for the information density. This formula must now be
applied to special classes of finite random functions. In thermodynamics,
the stétionary case is important and was studied with much effort [9], but

this case is less useful in image processing.

Formula (2) is always correct, but it is of special interest when the terms
D(S') for higher cardinalities |S'| are only very small values. Then the

I(S) terms can be calculated more easily.
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