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ABSTRACT: PrimariLy for appl icat ions in the f ie ld of digi tal  image process-

ing, lhe ."tlt.*atical concept of infornation density on finite randoo func-

t-  t ions is def ined anal sone ProPert ies are ext lacted. The idea is to local ize

the global infornat ion content at the individual Points in presence of de-

peni lences between poinls.  I t  Euros ou! that the information density is a

nonnegative value defined and conputable on each poinE' and that the global

information conlent of the whole random function is the sull of lhe inforna-

t ion densit ies of al l  Points.  Based on these concepts'  an edge-detect ion al-
q o r i r h n  i s  o u  t  1 i  n e d .
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1. INTRODUCTION

In disi tal  image processing, Pictor ial  infor:r0al ion is general ly represented

as arrays of grey values t l l .  The images modeled in this wav are discrete'

and the grey valües rePresenl ing Ehe br ightness or lun0inance of the poln!

are quant ized. For the solut ion of basic inage-Processing pr ioblems such as

scale chaoge, rotal ion'  and reqüant lzat ion'  this rePresentat ion is a eood

approach. For more sophist icatecl  image-Processing funct ions'  i t  nay be con-

venient to represent inages in a stochast ic Üay'  Images can be nodeled as

arrays of ranalolü var iables cal lei l  d iscrete randon f ields (see APPendix A) '

This approach is appropriate in image-processing fünct iols süch as image con-

pression, noise f i l ter ing, hal f toning, edge detect ion'  and in nost recogni-

t ion funct ions.

Roughly,  human percePtion of an iarage di f ferent iares betr ' Ieen two kinds of

inforrüat ion. The f i rst  is present at the edges or contours'  The se'ond is the

textrre, i .e. ,  large areas devoid of s igni f icant detai l '  Texture rePresenta-

r ion is possible using only few Paramelers [2] ,  I^ 'hereas contours mrst be

treateal more careful ly.  rat tern recognit ion and iaage understanding (or their i

preprocesses) begin with an image nodeled as an alray of grey values'  As a

f i rst  step, this i r0age mrst be transforned into a l ist  of  contorrrs and tex_

ture as the f i rst  1evel of  abstract image represeDlal ion'  Ior one paxt of

this task, a rel iable ealge-detecl ion or contour-f i f ld ing algori lhxo is required'

In further steps, recogni l ion wi l l  proceed to higher abstract ions'  but in i-

t ia l1y r , 'e are only interested in this f i rst  preprocessing step [3] '

As a part  of  probabi l i ty lheory, an atternpt is rnade to apPly inforrnat ion

theory !o inages. This inforroat ion content of an inage is mainly concentrated

along the conlours'  becaüse the loca1 information is high when the predict ion'

given some other poinls,  is bad änd vice versa. The concept of infomation in

comnrunication theory as introduce'l by shaflnon l"7ith a sender' a noisy channel



and a receiver is not very useful  here, as i t  impl ies concepts l ike causaLi-

ty,  etc.  r , rhich do noE have any meaning for images. lnscead, \ , re start  wiLh

a nodel of  predict ion, f ind lhe probabi l i t ies, and take the infornoaEion as

the negaEive logari thn of the prot labi l i ty,  (see Appendix B for more detai ls.)

The probabi l i t ies are given as joint  probabi l i t ies, ard individual image

points are usual ly dependent on one another,  0ür intui t ive understanding of

images makes i t  desirable to have an expression for:  the local inforroat ion

density at each poinl  in lhe inage, in addit ion to the g1oba1 infornat ion

content of the whole image and the narginal inforrnat ion conlen! of subimages,

In Sect ion 3, such a local infornal ion density is def ined. The main result

of  this uork is expressed in forroula (6).

Based on this def ini t ion, an algori tho to detect luminance edges on a grey-

level i roage can be iroplemented. The informärion density at a point can be

chresholded to detect an edge point.  To compale di f ferent edge-detecEion

algori thms, one has to consider the requireEenls for a good edge-dect ion

algori thrn, According to [4] ,  three cr i ter ia can be stated: 1) The delecled

parls of edges or contours should be connected (cr i ter ion of conl inuat ion).

2) The l ines represent ing the edges or contoürs should be thin (cr i ter ion of

thinness),  3) The edees or contoürs should be in the r ight place (cr i ter ion

of correc. locat ion).  As aüother important cr i ter ion, the sensiEivi ty .oward

noise should be nent ioned. For the t ime being, we ar:e not concerned with

test ing rhese cr i ter ia,  but they should be borne in mind when talking about

edge detect ion and contour f inding, The main di f f lcul ty of the infoürat ion-

density approach is no! the def i4iEion of information density,  but the nodel

of predict ion ( i ,e. ,  the slochast ic roodel of  the inage).  htrether the algo-

r i thn is good with respect to these cr i ter ia depends nainly on the stochast ic

Edge detect lon is one of the rnost importan! steps towards inage recognit ion

and ioage undersEanding. TypicaL appl icacions are found in character recogni-

t ion, i , /here lhe connect ions of the contours ate inrportan!,  and auConatic



inspect ioo of pr inted cireui t  boards, Idhere apart  f lon the cof l [ect ions, lhe

main problen is the small differences in grey values between foregroufld

änd backgrouad, so that noise plays an inportanE to1e. ihe problens afld the

state of i rhe art  in the f ie ld of edge detect ion today are surveyed in [3J.

2, BANDOM FI]NCTIONS AND MODE]-ING OF I],TAGES

Rando!0 functiors (a1so called stochastic functions, random processes) are

lr idely used in physics, but they can also be appl ied to image processing'

some reasons for nodeling an image as a rendon functiol ere given ia APpen_

d ix  A .

2 .1 .  Concep ts

civen a probability space (u,,1, ?), where f,i is a se!, -4 a a-algebra o\er:

0, and ? a irormed measure on -4, a tandom variable 6 is a üeasura_ble

funct ion

a t (sr,-4, P) '+ ( R, g),

lrhere ß. is the seL of real flumbers,

rardbm varj.able E is defined by its

I . ( x ) = P ( E < x ) .

An important concept in probability theory is the concept of alependence'

Tr"ro events -A1 and A2 in -4 are independent if P(A1 ^ A2) = P(A1).(A2), The

cooditional probability of the event Al given the eve[t Az iB defiaed as

'  - -1 ' "2 '
P (a. ^ A^)

of probabi l i ty theory

arld ß tb,e Borel o-algebra over

distr ibut ioa fuoct ion

]R. A

P (42)



r,rhere ?(A2) > 0 is assümed. The tü/o events A1 and A2 are ca11ed cooditioa-

ally independent given rhe event A1 (r'ith P(Aq) > 0) if

P(Ar  ̂  A2 lA3)  =  P(A t l \ ) .P (A2 lA l ) .

2.2. Random fuoctioos

We defifle a xaddom function g

lr i th the index set T, Iostead

said that a random fudction E

E  |  @ , - 4 ,  P )  x  r +  ( l R , @ ) ,  ( 0 , t )  + E r ( o ) ,

where the probabi l i ty space (n,- / ,  P) nust be arranged so tha! al l  point-

probabi l i ty spaces (9,{  rdt ,  Pt)  are contäiDed in @,J, P),  (This can be

forceal by taking the proaluct of all at and -4t.) ]:ne alependeDces of tr,Io

points 6*_ anal 6,^ are modeled in the probabi l i ty dist t ibut ion P.
I L  L Z

We do flot assume any sttucture on the set T. I-ater, we can give the set T

different structures. To treat Markov chains, T ürst be totally ordered.

Discrete i4ages need a relatiou expressing that two inage points are neigh-

b o r s .  B u t  h e r e ,  w e  v i s h  ! o  s E a t e  t h a E  i n  t h e  b a s i c  d e f i n i t i o n  ä  r a n d o m  [ u n c -

tion is 4l1 unstflrctured set of rardom variables \,rith a given joint probabi-

l i ty distr ibut ion P.

2.3. lnage models

Mathenatically nocleled, all irnage is a .function

o f

a  se t  { l . l t .  T }  o f  r andom u€ r i ab les  E t

this definition, equivalently it can be

a functioo

and tLe two

Ry+c ,  ( x , y ) * c=3 (x , y ) ,

xys e t s  R are usual ly intervals of the set R of



numbers or of lhe set Z of integets. I f  they are intervals of R, the inage

is ca1led cont inuous, and i f  lhey are intervals of Z'  the inage is cal1ed

d i s c r e t e  [  1 ] .

For determinist ic i roages, the set G is also an interval  of  R or Z. I f

c is an interval  of  z,  Lhe. image is cal led quant ized. The numbers in G

represerl t  the di f ferent grey values possible for image points '  The value

B(",y) 
"an 

be interpreted as the br ightness or luminance at (x,y).  A dis-

crete deEerninist ic image is nothing buE an array of välües of G.

A stochast ical ly nodeled inage is a randon funct ion rni  lh a t to-dinensional

set T. This neans tha! G is a set of  randoro var iables. The value B(x,y)

! , r i11 be interpreted as the probabi l i ty distr ibut ion of the bt ightness of

lhe image B in the point (x,y).  I f  al l  possible random variables in G

only take values in a f in i te subset of IR, lhe iBage is also ca1led quan-

c i  z e d .

The determinist ic nodel is a special  case of

each point can be said to häve a probabi l i ty

of a d-funct ion. Each stochast ical ly modeled

probabi l i ty)  set of  saüp1es, aad each sanple

image.

2 . 4 .  l h e  o o d e l i n g  p o w e r  o '  s r o c h a s t i c  i n a g c s

the stochast ic model,  s ince

density function of the forltr

inage is a h'eighted (by its

is a determinist ical ly modeled

A stochast ic image is def ined as a random fünct ion üi th index sel  Rx x Ry'

This index set has a lopological  strüciure, i .e. ,  a neighborhood relat ion

betr. 'een poinls.  The poinls close logelher seen to be highly correlated (see

Appendix A).  l , le cal l  lhese dependences topological  dependences, ToPological

dependences over neighborhoods with a radius of 20 pels and moxe are flornal



ia inage processing. But there are also dependences between parts of aa

inage far awäy fron each oi:her, which l'e sha1l call congrue[ces. (lJe have

an image of a train in nind where all wagons nay look the sal!e,) In natural

inages, the congruences are of no iEporlance. But this is nol  t rue for art i -

f ic ial  images süch as geomelr ical  drawings or tex!.  Al l  par ls of a l ine are

congruer!  to al l  other part ;  of  the same l ine. Anal al l  leEters "4" in a

printed text are more-or-less equa1, independent of where they occur iü the

text.

In many ieage-processing tasks, the stocha6t ic i loage nodel may help to

develop nuch more effect ive algori tbms for hal f toning, image conpression,

e d g e  d e t e c t  i  o n  a n d  r e c o g n i ! i o n .

2.5. The relat ion bet\ .reen randon funct ion and sample

In inage processing, an inage is usual ly given as a sample and no! as a

ralldom funclion. The question ls holr to estinÄte the randotü functiofl fron

one s.rmple (or from a sma1l sel  of  saDples).  We do noi uish to treat al l

knor^'n possible approaches to solve the estination problero! but \,re shall add

soroe remarks about this probleü from Ehe image-processing point of  v iew.

with a topological  üodel of  dependeaces in nind, one can est inate the

dependences. civen sone inäge-processing environr0enl (scanner, printer and

their  respect ive resolut ions, etc.) ,  one can experimental ly deternine the

topological  dependences for a class of inages (the class of text inages,

the cless of l ine-art  inages, the class of natural  images).  Especial ly,  one

can rDeaaure the "strength" of the dependence for a given disLance. Here,

one is not concerned \ i i th the inage data of a special  iüage, but with the

topological  struclure of the index set.  From the given point-probabi l i ly

dlstrrbutrons rr ,  one est inaces the j  oio!-probabi 1i  ry disrr ibuEion p. one,

approach i6 to take Markov chains general ized to cwo-dimensional index sets.



one also has to est imate each Point-Probabi l i ty distr ibüt ion Pt '  Nornal

distr ibut ions (also cal led Gaussian distr ibut ions) are often used' s i l lce

anrong othe! things' they have the followiog proPer:ties (L5], Pp' 22'24)l

1) They are uniquely characterized by lhe expectation and lhe covariance'

2) The concepts of inalePendence änd uncorrelatedness are equivalent' 3) the

narginal distr ibut ions and the condi l ional distr ibut ions are also nornal '

4) Under a nonsingulal  l inear transfor ioat ion'  a nonüa1 distr ibut ion becoroes

an easi ly calcülable norr0al distr ibul ion.

!,le cannot give mole hints on ho$r !o esti!0ale an irnage as a lendom frmcllont

büt i r  is a very important task in inage Processing. Often'  inage-processing

algori thns can be considerably improved by taking better stochast ic nodels,

but a 1ot of  research has st i1l  to be doae io this f ie ld.

3. INFORMATION ON RANDOM TTINCTIONS

In this sect ion, we sha1l def ine the global infornat ion content of a f in i te

raüalom funct ion {6alt  .  r} ,  and local ize i t  al  the poinrs 6a'  We assux0e a

ranalom funct ion E and one of i ts sanPles s to be given'  The infornat ioo

content of E is here ahrays measuted with resPect to lhe given sanple s '

Given the probabi l i ty s}ace l f i ' - , '  P),  the infornat ion cortert  I (A) of an

event A e -4 is defir.ea by

3.1. Concepts of infohBtion theory

I  (A)  = -1ot  
"1or .



The information conten! I(6) of  a random variable € wiEh respect

s is def ined by

to a sample

I ( g )  =  I (E  =  s )  -  - l oe  ? ( t  =  s ) . ( 1 )

The infornat ion content of a set of  evenEs {Aj i j  .  J}  is def ined as the

ioint infornat ion content I( i }  A.) .  I t  is easy to see from the def ini t ions-  t c J  u
that I (A) > 0 and i(A) = 0 only i f  P(A) = 1'  The information content of an

event A depends or l i  on the probabi l i ty of  A and on no other propert ies

of A. The infornal ion content I( t )  of  a raodon variable rni th respect to the

sample s depends only on the o-algebra and the salople s bul not on the

value 6 (or) in ts.

civen a f in i te randon funct ion {€r t  € T} and a saEple {sal t  e r} ,  we use

sooe abbreviat ions to simpl i fy the notat ion. Lte wri te P(S) and I(S) for
/ \ / \

P(ä te,  = sr) /  and 1(A (6r = s.) / '  rn the same wav' we n'r i te r(r)  and

I ( t , , t . )  f o r  I ( 6 -  =  s - )  a n d  T ( { , , .  =  
" " ,  

n  [ , ^  =  s . " ) ,  a n d  s o  o n .
t '  2  c  !

3.2. Local izat ion of the infornat ion

In tbe case Fhere al l  points of te. ic .  r)  are independenr,  the infor irut ion

cao easi ly be local ized. The joint  Ptobabi l i ty P(T) is the product of al l

point probabi l iL ies P(t) ,  and the joinr infonaat ion content I(T) is lhe sum

of al l  poiot infonüat ion conlents I( t ) .  But depeni lences connect the di f fer-

ent points,  and joint  information is not the sr] l l  of  the point infornat lon.

! , le reqnest that the infornation density JT(t), i .e' ,  the localized inforna-

t ion, on a random function {€alt.  r} satisf ies the fol lowing tr^'o require-

tnents:



1 )  J T ( t )  > 0 f o r a 1 1  t  € T ,

2)  )  r -1r ;  =  11. , .

The infomation aleosity nust reflect the coupling belween points by dePen-

alences. So we assume thar lhe couPling belween one point t and the rest

in! an'lof the poitrls in T can be divided into couPling betveen the Po

no other points' the Point and one othel point' the poiat and lwo other

points,  anal so on, This concep! leai ls to the def ini l ion

sr
r (s)  = L D(s ' )  Q)

s 'cs

for al l  S. T, l , le interpre! the terns D(S')  as couPl ing terms' This def ini-

t ion was inspired by the concePt of relat ive infornal ion ( t61, pp'  450-451) '

S i n c e  P ( O )  =  1 ,  L ' e  g e t  D ( O )  =  I ( O )  =  0 ,  D ( t )  =  I ( t )  a n d

D ( t 1 , t 2 )  =  r ( t r , t z )  -  r ( t r )  -  r ( t 2 ) .  t h e  t e r o  D ( t 1 ' t 2 )  i s  c h e  n e g a t l v e

relat ive inforr0at ion. These coupl i f lg letms D(S')  are now assnoed to belong

in equal parts to al l  Points of Si ,  anal the infomation density JT{t)  at  the

point t  is def ined as

s

\ - ]
1- t4l

t . s c T  ' - '
D ( S ) ,

goes over al l  subsels of T

JT(t)  nust not be equal to

points in T but outside

they are equal because no

(3 )

conraining t .  I t  can easi ly be

I(s) except for the itrdependent

s may have an ir l luence in JT(t) .

points ouiside T are involved.
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Tqgoren:

s-r(1) = z rr( t ) ,
t €T  

*

Proof:

TheoreE:

\ -  l ( l - l q r l
D(s)  =  ,2 -  ( - I ) ' ' '  ' ' ' I ( s ' ) .

r.(r)- t |$orsr= I I +D(s)= I lsl$orsy -r1,l.'  rcr scT '",  
3:;  r .r  ' " '  

: :T I
L

It i6 a question nhether the two assü4ptions expressed in fornulas 12) and -,
(3) are good assumptioos (see Appendix B).

3.3, CaLculation of the infornetion dedsity

rte information density J-(t) is defined via the auxil iary coupling terms

D(S). We shall now e*press the inforrnation density of a point with the

glven iaforrBtion I (s).

The transfoxmatio4 fron the D(s) to the I(s) is l inear and nonsingula!. The

inverEe transformation is calculateal in the followiDg theoxem.

(s)
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Proof l

r(s) =

\-
L

s ' .S

\-

\-

-s- 1 ,

_ )

s"cS

with the inverse trarlsfolmatioa shoim in fornula (5), the infornatiotr

density JT(t) defined in fornula (3) can be exPlesse' l  i tr  the teEus I(S)'

As a preceding step' \rc prove the following l,eqma,

fo r  a l l  0  <s  <n '

? r o o f :

t{e Eet

( s )  = I
;  B'r(s)

( - 1 ) k  / n - 6 - 1 \
i l_t--r\  k J'"f

t t (_1)ls' l-rs"lr(s,,)
S ' c S  S t r c s  I

t  (_r) ls ' l - ls" l1(s, , )  =
s;:s' sr

t  1-r1 ls '  l - ls ' l t , t " ,  -
S r r c s r c S

- .^ , , .  l : r  Is l - l t ' t \ .  . ' r - ls" lt t " ' u= r ' t r "  
t \  

k - l sn  l / \ - t l

,r,,, i '  
l i l '" 

[r ' r-,rs" l) 1-'k .
k:b t

r (s")  (1 -  1) ls l - ls" l -  r (s) .

üust be showa.

t  .  , , ls ' t - ts" l , /" , , \
L  \ - r l
cs rcs

\ -  t c r  t _ t c n l

Z r(s") L (-1) ' - '  ' - '
s,,cs s'rcsrcs

IsHs" l l< r_rcnr \
=  )  r rs , , l  ) .  [ r r r_ , r "  

, ) (_1)*

s 'T .s tä \ß t

, . , , l s l - l s " l -k

I

Lema:

1

; )
n

l f t r - s - r \
t k l

n-s-1
_ \ '- / ^

n - s - L . . k_ s \-r.,
. l - a  s + k + 1
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We prove An(o) = ßn(0):

€ <-uk/" - r \  H r-t .ru (n - r):
K=U

" -1"f#*=+-" = * Ä(. L)'-"n
= -1ff St' l)r-ukr*rl^-k)- ,\= -t (<r - rr" - r)n \* fo\ l / ' - "  

- '  t  - /  n\  t

= l=e to l fo rne l .

Now,  we prove An+I (s  +  1 )  =  An(s)  -  An+ l (s ) l

A,,*r(s + 1) - An(r -+*+r;l .;- 4ft=+ 1

1 /s t (n -s ) : ,  . \  . : (n -  * ) :  r= 
" 

- 
" \-G;r).--;-r--," 

- 
"7 

= - -G;-lti- = - 
" + 1

Now, ne prove Brr*1(" * 1) = Bn(s) - Bn+l(s):

ßo*r(") * B,,a1(s + r) - t*:=i"-t 
#+L (r. * rrn-

(n+1)-G+1)-l (_1)k /(n + 1) - (s + 1) _
'  

A f;r lFü] \  t  )

i." t-uk /" - 
"\. "C-1 (-i)k /n - " 

- r\
"kä;k-T\  n i '  n4o " . t+z\  

t  I

=H <-t lo (("- ' -r \  -  /n-.- i i+-P_o 
s+k+T\ \  t - t  i  

- \  k  U'

n - 6 - 1  ,  - . k  /  , \
-  \ \  ( - r )  l n -s -11-'  

.2 -  s+k+2 \  k  l
KEU

1
- " - i = - 4 . , ( s J '
l " \

"1[



I J

-F" t-r lk /"-"-r \ .F" <-t ln /"-"- i \*=k4s+k-1\ n-t  /  
- tr lo s+t+r\  k l '

* "$-t t-r)n 1" - " 
- r\ = "$-t ,-t,l-t = (" 

-." - t) .-  
k4 s+k+r\  k  /  

-  
ok-r . ,  

s+k+2\  k  /

-S t - r lk  /n-s-r \ *  
n$- t  ( - t )u / " - : - t )-

=f^'#*("-;-')=""'"''
This proves with iaduct ion A.r(s) = Bo(s) for al l  n > 0 and al l  e with

O  S  s  <  n ,  t

l,Iith this Le@ar \re can express the infornation density JT(t) with the

infornacion terms I  (S).

Theor€n:

r \ - lrr(L) = r+r L n6+-- 1\ r(t{s). (6)
, s.r\rr] l, 

. 
is | 

-J

Proof:

\-- sa
. i - ( . )  = Z r tT Z (- i ) ' " '  ' " 'T(s ' )

'  t €s 'T ' " ' s rcs

= lrts'r t  #t-trt t t- t t ' t
s 'E . r  I  o  I-  
t cS 

-

= |  r ts 'r  I  S 1-r1 ls l- ls ' l  *
s 'cT  5 ' - ' 5 '1  l r l
t cs '

* |  r1s ' l  t  i "$- t  1-11 ls l - ls ' t*r  -
s ' (T \  t t  J  s ' cscT \ { r }  ' " '  '
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.J.,.,,,, .ä,, *('l _ l!il)<-,,*r''r .

,,.ä,.,,,,,, ll+,1 "+ 
(''' ; l',J,i r) r-rr-rs't*r

,,,Ä,.,r,r, ' , , . , ,  
lr l- ls"l-r 

"+* 
(rrr 

- rs"r - r)

,,Ä,.,,,,,, 
'''-$_o'-',f*L (r'r - rs'r - 

)
l r  l -  l s ,  l -1  ,  . ,k

,,)r"r(rrs',r.1-rrs' l) Ä rrl- i i ir.

' (rr - rs'r ')=+,.Ä,,(Til ('r"t'tr''<'r)'
.  p (su{ r } )

=  - rog  
p  ( s )

resu l t :

wi th  I (su{ t } )  -  r (s )  =  - los  P(su{ t } )  +  1os  P(s )
= -roc P( t ls)  = r ( t ls) .

As e side effect, we have proven the follorring

CoroIlary:

JT ( t )>0 fo ra l 1  t €T .

Proof:

that i t  is only necessary

< P(r ls)  <. r .

T

In forEula (6),  r 'e see

this is c lear because 0

ro  p rove  r ( r l 5 , t  2  u , but

I
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with this corollar:y and formula (4), we have proven thet the inf,orEation

density JT(t) has the t\"/o propert ies we wanted it  to have in section 3'2'

and \dith forroula (6), we are able to express lhe infonoation deflsity laithout

the help of the auxil iary coupling terns D(S).

In the

T i s

development of fornula (6),  no use of a

assuned. the ifldex set T is nothing but

structure on the inalex set

We now give some renarks on the interpretation of formula (6). The infor_

mation density is not the corditional information content of Point t givefl

the rest of the point6, büt is a oeighted sull of the conditional infornation

content of point t given all subsets of points outside t. olle can define

the average over al l  subsets to a given cardinal i ty k,

T

n t r(rls)- )scr \ t t l
' l s l  =  k

end the information

f rom 0  to  lT l  -  1 ,

density JT(t)  is the average over al l  ITI cardinali t ies

- T ' - ' ,
l T t -

--:- s
l ' r l  L' - '  k=0

1 T

{ ( r ) ,

where not each sübset,  büt each cardinal i ty has

Datioo density is not I(t) as ilr the ifldependent

as one ntay have expected, but both values occur

sIrt l .

4. CONCT"USIoNS

the sane rdeight. The iofor-

case ,  a r rd  no t  I ( t l T \ { t } )

in the oeighted sün ovea the

we have defined the inforoation density of a fioite set of {endoE variables.

The definirion6 are geflera1, butr l'e had especially applications in inage

processing in nind, As expected, the infornatiod density depends oa the



stochastic rnoilel useal to alescribe a4 image. The important reoaiiing problen

is Eo f ind betEer oodels to descr ibe che stochasl ic dependences of an inage.

The infornat ion density saLisf ies the tr , , Io requirements desirei l ,  that i t  is

never negative and that the global infornation of the set of randon variables

is the suh of the iaforBal ion densit ies of a1I points,  The def ini t ion we gave

does not assr$e any structure as an ordering relaf ion or a distaoce fuDc_

t r o n .

The inteirt of this report is naialy to alefine the concepts and to solve the

ge[eral nathernatical problens. The work sho;'n here can be the tiasis f6r

further effoits in applying the infonoation ilensily to several iEege-pto-

cessi .ng tasks. In part icülar,  an edge-detect ion algori thm can be developed

based on this concept.  The codtours can be found by a thresholal  apProach or

by a grey-tooe representation of the infornation density of the inage.
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APP]INDIX A

RNASONS FOR STOCHASTIC IMAGE PROCESSING

There are three main reasons 1.'hy an image should be modeled as a randoo

funct ion. The f i rst  reason ib the model ing of noi6e nhich is always present

in an lmage. Secondly,  an image is not sensit ive in sone wrong points.  And

Last but üot 1east,  the dependences (or correlat ions) bel l7een di f ferenE

points of an inage ar:e (The dala-explosion problem denands good

compression algori thms which reduce these redundancies. )

A . 1 .  N o i s e  i n  i n a g e s

There is only very l i t t le kno! 'z ledge on the determinist ic s ide of noise. With

the knonn and neasured paraueters, noise can be estinated as a random func-

tion. An impor:tant inpulse !o the theory of random functions (randon pro-

cesses) has been the reed to develop a nodel of  noise and noise- l ike physi-

cal  systenrs suih as Gaussian lrhi te ooise and Bro!,mian motion, We can coü-

clude that,  because of the pr:esence of noise in al l  inages, an i rnage should

be lnodeled as a random funct ion i f  noise is signi f icant.  In deterninist i -

ca11y modeled inages, lhere is no control  over noise, In ' .age restorat ion of

iEages dislorted by noise is based oD the stochast ie inage roodel (wienet

r r l t e n n g r .

4.2. Patterns in an image

In an Engl ish- länguage sentence, each "biE" nay be ixoportant,  as one can see

fror0 the fol loning thio sentences: " I  l ike noney" and "I  l ike honey".  Images

are mrch less sensit ive. Very di f ferent bir  patterns may shol '  rhe same inage

for the hunan observer.  For an inage, pr inted r.r i th sone huüdred pels per



inch and seen with noinal observat ion distance, not the effect ive 1ocal bi t

pattern is inpot lant,  but the nore globa1 dist . ibut ion of black points

because of the f in i te aperture of our eyes. This effecE is demonstrated

in Figs. 41 and A2. With the saroe observat ion distance but with bigger pr inr

d o t s ,  t h e  d L f f e r e n c e  c a n  b e  s e e n .

18

d i l f e r e n r  b i t  p a L L e r n s  s h o u / i n g  L h e  s a D e  r m a g e .Figure 41. Two

The property of being the same image depends on the receiver of the i i rage.

Seen ir i th a microscope, the two inages are di f ferent.  Also for a progran

working on pe1 leve],  Lhe two inages are not lhe sane, eiEher.

the effect shonn above can be rnodeled in Cerns of r :andom funcrions. l , , tor the

lulninance of one inage point,  but the integraced value over sone nei: jhboi-

hood is importanE for Ehe eye of the hunan observer.
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b )

il.
1

I igure A2. Enlarged part  of  the
Ehe eye scaled by a factor 15.
o n  t h e  l e f t  i n  F i g .  A 1 ,  b )  t o

images in Flg. A1: par.  with
a) corresponds to the image

thal on the r ight,
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4.3. lnage point correlat ions

The alepeoilences of the inage points on lhe poinEs in a neighborhood are

plotted in t.igs. A3 to A6. 'ihe sane inage as in Fig. A1 was used to

cletermine the correlations. The iraage \tas ünifotmly requantized (histogram

equal izat ion) to get uni fo;  distr ibut ion of al l  grey yalues in the i roage.

In the next step, the occurlences of Pairs of grey values for al l  pairs of

image points vi th a given distance of d pels were counted. l . le plot ted the

correlat ions for pairs in the same l ine of the image with Ehe disiances

d. = 1, 4,  16, 64. The plots show a high peak ia the diagonal '  This can

be interpreted as a high probabi l i ty that tüo points have more or less the

sE|rße grey value, $lhen they are close together. These correlations cqn be

nodeled by the probabi l i ty theoret ical  concePt of dependence. The reason

why lhe diagonal is not so doninant oll the left side of .the plots comes

fron the histogram equalization, where gaps betr,reen grey values are created

to force the image into uniform quänt izat ion.
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Figure A3. Correlat ions
for the dislanc€ d = 1
p e l .

I igure A4. Correla. ions
for lhe distance d = 4

p e l ,
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Figure A5, correlat iors
f o r  t h e  d i s l a n c e  d  =  1 6
p e l .

Figure A6. Con:elat ions
for the distaDce d = 64

p e 1 .
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APPENDIX B

SOME RE}IARKS TO THN DEFINITION OF IMORMATION

We }1ave discr lssed randon funcr ions with some of cheir  image-processing appl i -

cat ions. In order to sPeak about infornat ion'  two systems are neces'ary which

cormunicate in some way. The inforBalion content is a measule for the content

of a nessage. I t  is usüa11y neasured irr  bi ts.  t ' Ie are interested her 'e in lhe

inforDäl ion content of an i roage' The nessage in this case is a discrete

quäntized image, the seniler is not itlportant' and the receiver is the hunan

observer or a computer progfan processing this inage.

Ther:e are t$o approaches to Beasdre the infornation content of an inage ' One

can al i rect ly count the nunber of bi ts necessary to store or generate lhe

given sanrple of lhe image. But one can also define the information conteflt

of  the saxople via the Probabi l i ty distr ibüt ion of the inage as a random fünc-

t ion. (with opl imal conpression, both approaches result  in the sane value')

I inal lyt  ne are interested in hor i t  is possible to local ize the infonoat ioa

content of a random function in general. The information content seems to be

a property of a sanple wi ih resPect to a random funct ion. we br ief ly discuss

the assumptions in the def ini t ion of infonut ion densitv given in sect ion 3'

8.1. Infonoat ion as counted bi ts

A n  i m a g e  o t  E h e  s i z e  N "  *  N -  p o i n t s  ! ' / i t h  N c  g r e v  v a l u e s  c a n  b e  s t o r e d  i n
^ t

N .  N '  Ios N- bi ts.  To cake lhis value as the infornat ion content is not
x y

a good solut ion, because i t  does not depend on the content of the inage' An

image storecl in this forro contains many redundaflcies that can be reEoved by

conpressing lhe inage. The infornat ion content of an inage is then def ined
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the number of bi ts necessary to store the comPressed image' This way leads

Shannon's infornat ion theory-

A necessary renark must be made. For each specif ic inage, i t  is possible ro

give an algori thn in which this image is compressed to one bi t '  The whole

iülage is thea storeal in the decoüpiession algori thn so that the algori thn

only has to knor^r whether or not i t  is ahe specif ic inage' This is a message

possible in one bi t .  I ron this point of  v iew, a def inir ion of the information

content of an ixoage which uses the concep! of al l  possible comPr:ession algo-

r i  t h m s  h a s  n o  s e n s e .

As we have described, a comPuter prograrn can generate an inage' This idea

can be used to def ine the information content of an image. The iaformation

content of ä cleterrninist ical ly nodeled inage is the length of the shortest

p r o g r a m  v r h i c h  p r o d u c e s  t h i s  i n a g e  w i r h o . r r  a n y  i n p u L  f / l '

8.2.  Infornat ion fron probabi l i tv theory

If  the nessage is an EngLish- language sentence, the frequencies of the

1elters of the alphabet are knor, ' .n.  Büt i t  is impossible to count the occur-

rences of al1 inages. One idea is to count the subinages of a cer lain size

and forn. with this,  we are in the nidst of  f inding the stochast ic descr iP-

t ion for the class of al l  images. l ' le see that i t  is a problen to Dodel Ehe

stochastic behavior of an ilnage. Nor,I 1et us inagine lhat we have a stochas_

L i c  o o d e l  f o r  r h e  c l a s s  o I  i m a g e s  i n  w h i c h  w e  a r e  i n L e r e s c e d '

The def ini t ion of infornat ion in this sect ion depends on the probabi l i tv

distribution of the model given. one can only speak about information lrith

respect !o a stochast ic üodel.  In the last sect ion'  ( le sholted how lo
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compr:ess a specif ic inage to one biE. This compression algori thn is only

reasonable i f  .he i rdage is frequenl ly received. The Probabi l i tv of  occur-

rence of this i roäge nust be around 0.5. In image proeessing, the stochäst ic

model depends on Ehe special  Problens to be solved therewith'  I f  the class

of images conlains nainly scanned text Pages of a book'  the stal ist ics have

to ref lect this knowl,edge. Ir fornat iqr is,  so to sPeak'  only def ined with

respec! !o stat is l ics in lhe seme way as the oPtinal  comPression t8l '  Infor-

nat ior is nothing more than the negat ive logari thn of the probabi l i ry '  and

the nain task is the def ini t ion of useful  s lochast ic nodels for imporlanl :

c lasses of images. Here'  good solut ioas are no! yet avai lable'

B.3, I -ocal infomation

lnfornat ion oo a set of  ranclon var iables is not a 1ocal propetty because of

the vai ious depenalences'  I rom the nalhematical  s ide of infornat ion theory'

some concepts süch as condit ional infonMtion, information gain, änd rela-

t ive information are knon.r l  [6] .  These concepts are closely related'  The

relat ive infor_mation is the negat ive information gain fron the in ' lepen' lenE

t o  L n e  d e p e n d e n t  c a s e s  o  E r v o  r a n d o m  v a r i € b I e s .

The general izat ion of the concep! of relat ive infornat ion and the Property

of infornät ion Eo be addi l ive 1ed us to the def ini t ion of formrla (2) '  The

al i f ferei t  coupl ing Ler:ns D(S')  are trealed as independen! parts of the

information I(S),  and independent infonnat ion can be added' This renark is

noE a proof of fornula (2),  but i t  is a clue to the idterpretat ion of the

t e r m s  D ( S r )  ,

In the def ini t ion of relat ive inforroaaion, an intelprelat ion can be given

(t61, p.451) that the relaEive information is the amount of inforrna!1on

about one randon variable containeal in the other '  Becaüse of the s)@etry



of thir definition' the relative infornation can be diqtributed to boFh

raniloE variables in equal Perts. Irom here, we stated fornula (3)' lle inter-

preled the lerDs D(S')  as the symetl ical ly dis lr ibuted iofornat ion belonging

to each point in st .

With the tr,ro assunptioBs st;ted in fornltlas (2) and (3), we nere able lo

alevelop fortula (6) for the information deDsity' This foxmula must not{ be

appl ied to special  c lasFes of f in i te rani loD funct ions'  Iü thernodyaanics'

the stat ionary case is inportant aod l tas studied with much effort  [9] '  but

this cabe is less useful  in image pl :ocessing. 
\ -

Fglmula (2) is always cortect,  but i t  . is of  special  interest l rhen Ehe tersls

D(S')  for higber ca(dinal i t ies ls ' l  are only verv smal l  values'  Then the

I(s) terros can be calculated r0ore easi ly.
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