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Abstract

The video channel with the title “Professor M does Science” in YouTube offers a simple step-
by-step but all the same very valuable and rigorous introduction into the world of quantum physics.
This script covers the angular momentum and helps to digest the topic covered by a group of those
videos but is not meant as a replacement for them.

4 Angular Momentum and Central Potentials

4.1 Angular Momentum

Angular momentum is a key concept in classical mechanics and in quantum mechanics. It is needed to
describe the motion of particles in central potentials such as the hydrogen atom, but also the spin of a
particle is a type of angular momentum.

In classical mechanics the angular momentum L is defined by L = x × p where x = (x1, x2, x3) is the
position of the moving point mass from a reference point and p is the momentum of the point mass. In

quantum mechanics angular momentum L̂ = (L̂1, L̂2, L̂3) is defined as

L̂1 = x̂2p̂3 − x̂3p̂2 L̂2 = x̂3p̂1 − x̂1p̂3 L̂3 = x̂1p̂2 − x̂2p̂1

using the usual quantization rules. The components of L̂ are Hermitian as

L̂†1 = (x̂2p̂3 − x̂3p̂2)† = (x̂2p̂3)† − (x̂3p̂2)† = p̂†3x̂
†
2 − p̂

†
2x̂
†
3 = p̂3x̂2 − p̂2x̂3 = x̂2p̂3 − x̂3p̂2 = L̂1

shows just for one of the components using (ÂB̂)† = B̂†Â† plus the facts that x̂j and p̂k are Hermitian
and commute for j 6= k.

The commutation relations for the components of L̂ are[
L̂1, L̂2

]
=
[
x̂2p̂3 − x̂3p̂2, x̂3p̂1 − x̂1p̂3

]
=
[
x̂2p̂3, x̂3p̂1

]
−
[
x̂2p̂3, x̂1p̂3

]
−
[
x̂3p̂2, x̂3p̂1

]
+
[
x̂3p̂2, x̂1p̂3

]
=
[
x̂2p̂3, x̂3p̂1

]
+
[
x̂3p̂2, x̂1p̂3

]
= x̂3

[
x̂2p̂3, p̂1

]
+
[
x̂2p̂3, x̂3

]
p̂1 + x̂1

[
x̂3p̂2, p̂3

]
+
[
x̂3p̂2, x̂1

]
p̂3

=
[
x̂2p̂3, x̂3

]
p̂1 + x̂1

[
x̂3p̂2, p̂3

]
= x̂2

[
p̂3, x̂3

]
p̂1 +

[
x̂2, x̂3

]
p̂3p̂1 + x̂1x̂3

[
p̂2, p̂3

]
+ x̂1

[
x̂3, p̂3

]
p̂2

= x̂2

[
p̂3, x̂3

]
p̂1 + x̂1

[
x̂3, p̂3

]
p̂2 = x̂2(−i~)p̂1 + x̂1(i~)p̂2 = i~(x̂1p̂2 − x̂2p̂1) = i~ L̂3

using [x̂j , x̂k] = [p̂j , p̂k] = 0, [x̂j , p̂k] = i~ δjk and [Â, B̂Ĉ] = B̂[Â, Ĉ] + [Â, B̂]Ĉ. Thus, the commutation
relations for the components of angular momentum are[

L̂1, L̂2

]
= i~ L̂3

[
L̂2, L̂3

]
= i~ L̂1

[
L̂3, L̂1

]
= i~ L̂2

or in a more compact form[
L̂j , L̂k

]
= i~

∑
`

εjk` L̂`
[
L̂j , L̂k

]
= i~ εjk` L̂` (4.1)
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using the Levi-Civita symbol εjk` defined as ε123 = ε231 = ε312 = 1, ε132 = ε213 = ε321 = −1 and
εjk` = 0 if two or three indices are equal. The left form is with explicit summation and the right form
uses Einstein’s summation convention.

Commutation relations allow to work with quantities in an abstract manner. In quantum mechanics
there is an observable called spin that obeys the exact same commutation relations but has no classical
counterpart. The spin can be understood in similar terms, and it is also called an angular momentum.
Thus, one defines a general angular momentum Ĵ = (Ĵ1, Ĵ2, Ĵ3) in quantum mechanics that obeys the
commutation relations

[
Ĵj , Ĵk

]
= i~ εjk` Ĵ`. This includes the so-called orbital angular momentum L̂ as

well as the spin angular momentum denoted by Ŝ.

As angular momentum has three components one can assign a magnitude Ĵ
2
. It is defined as

Ĵ
2

= Ĵ2
1 + Ĵ2

2 + Ĵ2
3

and it is an observable because with (Ĵ
2
)† = Ĵ

2
it is Hermitian. Its commutator with a component of

the angular momentum is[
Ĵ

2
, Ĵ1

]
=
[
Ĵ2

1 , Ĵ1

]
+
[
Ĵ2

2 , Ĵ1

]
+
[
Ĵ2

3 , Ĵ1

]
=
[
Ĵ2

2 , Ĵ1

]
+
[
Ĵ2

3 , Ĵ1

]
= Ĵ2

[
Ĵ2, Ĵ1

]
+
[
Ĵ2, Ĵ1

]
Ĵ2 + Ĵ3

[
Ĵ3, Ĵ1

]
+
[
Ĵ3, Ĵ1

]
Ĵ3

= Ĵ2(−i~Ĵ3) + (−i~Ĵ3)Ĵ2 + Ĵ3(i~Ĵ2) + (i~Ĵ2)Ĵ3 = 0

shown just for the first one.

Because [Ĵj , Ĵk] 6= 0 for j 6= k two different components of the angular momentum have no common set
of eigenstates, cannot be measured simultaneously and are subject to an uncertainty principle. Other
than the case of [x̂, p̂] 6= 0 where two different observables cannot be measured simultaneously here two
components of the same physical quantity cannot be measured simultaneously.

4.2 Ladder Operators in Angular Momentum

Ladder operators – as the name suggests – allow to change angular momentum by a discrete amount
such that one can go up and down a ladder. Similar operators exist for the quantum harmonic oscillator

and quantum fields. Because [Ĵ
2
, Ĵj ] = 0 these two operators form a set of commuting operators where

Ĵj = Ĵ3 is usually chosen by convention. One can describe the physical observables of angular momentum

through the two operators Ĵ
2

and Ĵ3.

The ladder operators are defined using Ĵ1 and Ĵ2. The raising operator is Ĵ+ = Ĵ1 +i Ĵ2, and the lowering
operator is Ĵ− = Ĵ1 − i Ĵ2. They are both not Hermitian and are therefore no observables. Actually,
these two operators are each others adjoint such that Ĵ†+ = Ĵ− and Ĵ†− = Ĵ+ as

Ĵ†+ =
(
Ĵ1 + i Ĵ2

)†
= Ĵ†1 − i Ĵ

†
2 = Ĵ1 − i Ĵ2 = Ĵ− Ĵ†− =

(
Ĵ1 − i Ĵ2

)†
= Ĵ†1 + i Ĵ†2 = Ĵ1 + i Ĵ2 = Ĵ+

proves.

Using these two newly defined operators Ĵ+ and Ĵ− one can derive

Ĵ+ Ĵ− =
(
Ĵ1 + i Ĵ2

)(
Ĵ1 − i Ĵ2

)
= Ĵ2

1 + Ĵ2
2 + iĴ2Ĵ1 − iĴ1Ĵ2 = Ĵ2

1 + Ĵ2
2 − i

[
Ĵ1, Ĵ2

]
= Ĵ2

1 + Ĵ2
2 + ~Ĵ3 = Ĵ

2
− Ĵ2

3 + ~Ĵ3

Ĵ− Ĵ+ =
(
Ĵ1 − i Ĵ2

)(
Ĵ1 + i Ĵ2

)
= Ĵ

2
− Ĵ2

3 − ~Ĵ3

and gets

Ĵ
2

=
1

2

(
Ĵ+ Ĵ− + Ĵ− Ĵ+

)
+ Ĵ2

3

2



as an alternative definition for Ĵ
2

= Ĵ2
1 + Ĵ2

2 + Ĵ2
3 . The commutation relations for the four operators Ĵ

2
,

Ĵ3 and Ĵ± are[
Ĵ

2
, Ĵ±

]
= 0

[
Ĵ3, Ĵ+

]
= ~ Ĵ+

[
Ĵ3, Ĵ−

]
= −~ Ĵ−

[
Ĵ+, Ĵ−

]
= 2~ Ĵ3

and can be easily checked.

The eigenvalue equations are

Ĵ
2
|λ, µ〉 = λ |λ, µ〉 Ĵ3 |λ, µ〉 = µ |λ, µ〉

for the two compatible observables Ĵ
2

and Ĵ3. Because of the commutation relations one knows that if

|λ, µ〉 is an eigenstate of Ĵ
2

also Ĵ± |λ, µ〉 is an eigenstate of Ĵ
2

as

Ĵ
2(
Ĵ± |λ, µ〉

)
= Ĵ±

(
Ĵ

2
|λ, µ〉

)
= λ

(
Ĵ± |λ, µ〉

)
proves, and that if |λ, µ〉 is an eigenstate of Ĵ3 also Ĵ+ |λ, µ〉 is an eigenstate of Ĵ3 as

Ĵ3

(
Ĵ+ |λ, µ〉

)
= Ĵ+Ĵ3 |λ, µ〉+ ~Ĵ+ |λ, µ〉 = µĴ+ |λ, µ〉+ ~Ĵ+ |λ, µ〉 = (µ+ ~)

(
Ĵ+ |λ, µ〉

)
shows using [Ĵ3, Ĵ+] = ~ Ĵ+ ⇒ Ĵ3Ĵ+ = Ĵ+Ĵ3 + ~Ĵ+. Similarly, for Ĵ− gives

Ĵ3

(
Ĵ+ |λ, µ〉

)
= (µ+ ~)

(
Ĵ+ |λ, µ〉

)
Ĵ3

(
Ĵ− |λ, µ〉

)
= (µ− ~)

(
Ĵ− |λ, µ〉

)
and this shows that Ĵ± |λ, µ〉 are eigenstates of Ĵ3 but with eigenvalues µ± ~.

To summarize, Ĵ± |λ, µ〉 is an eigenstate of Ĵ
2

with eigenvalue λ and an eigenstate of Ĵ3 with eigenvalue
µ± ~ such that the action of Ĵ± on an eigenstate |λ, µ〉 can be written as

Ĵ+ |λ, µ〉 = N+ |λ, µ+ ~〉 Ĵ− |λ, µ〉 = N− |λ, µ− ~〉

and shows why Ĵ+ and Ĵ− are called a raising and lowering operator, respectively. Because multiple
applications of the raising or lowering operators allows to go up and down similarly to a ladder these
operators are called ladder operators. With the norm∥∥∥Ĵ+ |λ, µ〉

∥∥∥2

= 〈λ, µ|Ĵ†+ Ĵ+|λ, µ〉 = 〈λ, µ|Ĵ− Ĵ+|λ, µ〉 = 〈λ, µ|Ĵ
2
|λ, µ〉 − 〈λ, µ|Ĵ2

3 |λ, µ〉 − 〈λ, µ|~Ĵ3|λ, µ〉

= (λ− µ2 − µ~) 〈λ, µ|λ, µ〉 = λ− µ2 − µ~ = |N+|2

using Ĵ− Ĵ+ = Ĵ
2
− Ĵ2

3 − ~Ĵ3 and similarly for
∥∥∥Ĵ− |λ, µ〉∥∥∥2

one gets

Ĵ+ |λ, µ〉 =
√
λ− µ2 − µ~ |λ, µ+ ~〉 Ĵ− |λ, µ〉 =

√
λ− µ2 + µ~ |λ, µ− ~〉 (4.2)

with the calculated factors N± =
√
λ− µ2 ∓ µ~.

4.3 Eigenvalue Equation for the Angular Momentum Operators

The eigenvalues λ for Ĵ
2

satisfying Ĵ
2
|λ, µ〉 = λ |λ, µ〉 are positive or zero because

〈ψ|Ĵ
2
|ψ〉 = 〈ψ|Ĵ2

1 |ψ〉+ 〈ψ|Ĵ2
2 |ψ〉+ 〈ψ|Ĵ2

3 |ψ〉 = 〈ψ|Ĵ†1 Ĵ1|ψ〉+ 〈ψ|Ĵ†2 Ĵ2|ψ〉+ 〈ψ|Ĵ†3 Ĵ3|ψ〉

=
∥∥∥Ĵ1 |ψ〉

∥∥∥2

+
∥∥∥Ĵ2 |ψ〉

∥∥∥2

+
∥∥∥Ĵ3 |ψ〉

∥∥∥2

≥ 0

and this especially means 〈λ, µ|Ĵ
2
|λ, µ〉 = λ 〈λ, µ|λ, µ〉 ≥ 0 proving λ ≥ 0 since eigenstates are normalized.

Further using

Ĵ
2
− Ĵ2

3 =
1

2

(
Ĵ+Ĵ− + Ĵ−Ĵ+

)
=

1

2

(
Ĵ†−Ĵ− + Ĵ†+Ĵ+

)
〈λ, µ|1

2

(
Ĵ†−Ĵ− + Ĵ†+Ĵ+

)
|λ, µ〉 =

1

2

(
〈λ, µ|Ĵ†−Ĵ−|λ, µ〉+ 〈λ, µ|Ĵ†+Ĵ+|λ, µ〉

)
=

1

2

(∥∥∥Ĵ− |λ, µ〉∥∥∥2

+
∥∥∥Ĵ+ |λ, µ〉

∥∥∥2
)
≥ 0
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and

〈λ, µ|Ĵ
2
− Ĵ2

3 |λ, µ〉 = 〈λ, µ|Ĵ
2
|λ, µ〉 − 〈λ, µ|Ĵ2

3 |λ, µ〉 = (λ− µ2) 〈λ, µ|λ, µ〉 ≥ 0

proves that µ2 ≤ λ. Combined these two results show λ ≥ µ2 ≥ 0.

The raising operator Ĵ+ acts as Ĵ+ |λ, µ〉 =
√
λ− µ2 − µ~ |λ, µ+ ~〉 on |λ, µ〉 according to (4.2), and λ

and µ must satisfy −
√
λ ≤ µ ≤ +

√
λ because of µ2 ≤ λ. If one takes an arbitrary value µ between −

√
λ

and +
√
λ one can apply Ĵ+ until µ >

√
λ − ~. If one applies Ĵ+ one jumps over

√
λ, and this is not

allowed. Thus, µ ≤
√
λ implies that µ has a maximum value µmax and the additional rule

λ = µ2 + µ~⇒ Ĵ+ |λ, µ〉 = 0

ensures that the state is killed and the ladder terminates. There is a maximum value to be reached
and this must be the µ for which µ2

max + µmax~ = λ must hold. Applying (Ĵ+)p to |λ, µ〉 must give
|λ, µ+ p~〉 = |λ, µmax〉 for some integer p. Further, the eigenvalues must be quantized because the
lowering operator leads from |λ, µmax〉 to |λ, µmax − ~〉 and so on. Similarly, there must be a µmin. The
two conditions

µ2
max + µmax~ = λ µ2

min − µmin~ = λ

lead to µ2
max + µmax~ = µ2

min − µmin~ and µmin = −µmax. Because from any µ one must reach µmax and
µmin in integer steps of ~, µmax = µmin + n~ for an integer n. From µmax = µmin + n~ = −µmin + n~
follows µmin = −n2 ~ and µmax = +n

2 ~ and

λ = µ2
max + µmax~ =

(n
2
~
)2

+
n

2
~2 =

n

2

(n
2

+ 1
)
~2

such that λ and µ can only assume values

λ =
n

2

(n
2

+ 1
)
~2 µ = −n

2
~,
(
−n

2
+ 1
)
,
(
−n

2
+ 2
)
, ...,

(n
2
− 1
)
,
n

2
~

for n = 0, 1, 2, ... where µ can assume n + 1 values. Calling j = n
2 as usual in quantum mechanics then

j can assume values j = 0, 1
2 , 1,

3
2 , ... in steps of 1

2 . Thus, λ has values λ = j(j + 1)~2 and µ has values
µ = m~ where m = −j,−j + 1, ..., j − 1, j. Thus, the angular momentum eigenvalue equation can be
written as

Ĵ
2
|j,m〉 = j(j + 1)~2 |j,m〉 Ĵ3 |j,m〉 = m~ |j,m〉

with m one of the 2j+1 values −j,−j+1, ..., j−1, j, and the action of the raising and lowering operators
can be written as

Ĵ+ |j,m〉 = ~
√
j(j + 1)−m(m+ 1) |j,m+ 1〉 Ĵ− |j,m〉 = ~

√
j(j + 1)−m(m− 1) |j,m− 1〉 (4.3)

using the quantum numbers j and m.

The two versions of the Planck constant h = 6.62607015 · 10−34 J s and ~ = h
2π have units of angular

momentum. Thus, the eigenvalues λ = j(j+1)~2 and µ = m~ of Ĵ3 are both consistent in terms of units.
Some values for the eigenvalues and eigenvectors:

j j(j + 1)~2 m m~ |j,m〉
0 0 0 0 |0, 0〉
1
2

3
4~

2 − 1
2 − 1

2~ | 12 ,−
1
2 〉

+ 1
2 + 1

2~ | 12 ,+
1
2 〉

1 2~2 −1 −h |1,−1〉
0 0 |1, 0〉
+1 +h |1,+1〉

Conventions for the different types of angular momentum use Ĵ , j, m for general angular momentum, L̂,
`, m` for orbital angular momentum, and Ŝ, s, ms for spin angular momentum. If it is clear from the
context then m can be used instead of m` and ms. Mathematically allowed values for j are 0, 1

2 , 1,
3
2 , ...

theoretically. However, for orbital angular momentum only integer values for ` are possible, but for spin
orbital angular momentum s can assume integer or half-integer values.
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4.4 Orbital Angular Momentum

In classical physics angular momentum is the rotational equivalent of linear momentum and it is therefore
found everywhere in systems with rotational motion. The corresponding quantity in quantum mechanics
is orbital angular momentum and it is found in many system such as in the hydrogen atom.

Orbital angular momentum L̂ = (L̂x, L̂y, L̂z) is defined as

L̂x = ŷp̂z − ẑp̂y L̂y = ẑp̂x − x̂p̂z L̂z = x̂p̂y − ŷp̂x

in quantum mechanics. Since orbital angular momentum describes motion in the three-dimensional space
the most useful representation for it is in the position representation. Position and momentum operators
are

r̂ = (x̂, ŷ, ẑ) = (x, y, z) p̂ = (p̂x, p̂y, p̂z) = −i~
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
in this representation and this means that

L̂x = −i~
(
y
∂

∂z
− z ∂

∂y

)
L̂y = −i~

(
z
∂

∂x
− x ∂

∂z

)
L̂z = −i~

(
x
∂

∂y
− y ∂

∂x

)
are the components of the orbital angular momentum operator in the position representation.

Often, however, these operators are needed in spherical coordinates (r, ϑ, ϕ) where r is the distance of
the point from the origin, ϑ is the angle of the vector with the z-axis called the polar angle, and ϕ is the
angle of the vector with the x-axis when projected into the xy-plane called the azimuthal angle. Spherical
coordinates are restricted to r ∈ [0,∞), ϑ ∈ [0, π], ϕ ∈ [0, 2π), and the mathematical relations between
Cartesian and spherical coordinates are

x = r sinϑ cosϕ y = r sinϑ sinϕ z = r cosϑ

r =
√
x2 + y2 + z2 ϑ = cos−1

(
z√

x2 + y2 + z2

)
ϕ = tan−1

(y
x

)
in both directions. Note that here the so-called physics conventions are used while the mathematicians
usually use conventions where ϑ and ϕ are exchanged.

To demonstrate how operators in quantum mechanics look like in spherical coordinates only the z-
component of orbital angular momentum in position representation is shown. In L̂z the factors x and y
can simply be replaced but the derivatives become

∂

∂y
=
∂r

∂y

∂

∂r
+
∂ϑ

∂y

∂

∂ϑ
+
∂ϕ

∂y

∂

∂ϕ

using the chain rule. One can use

r2 = (x2 + y2 + z2)
∂
∂y⇒ 2r

∂

∂r
= 2y

∂r

∂y
=
y

r
=
r sinϑ sinϕ

r
= sinϑ sinϕ

for the first term. Similarly, one can use

cosϑ =
z

r

∂
∂y⇒ − sinϑ

∂ϑ

∂y
= z

∂

∂y

(
1

r

)
∂ϑ

∂y
=

z y

r3 sinϑ
=
r cosϑ r sinϑ sinϕ

r3 sinϑ
=

cosϑ sinϕ

r

with

∂

∂y

(
1

r

)
=

∂

∂y

(
(x2 + y2 + z2)−1/2

)
= −1

2
(x2 + y2 + z2)−3/2 2y = − y

r3

for the second term. Finally, one can use

tanϕ =
y

x

∂
∂y⇒ 1

cos2 ϕ

∂ϕ

∂y
=

1

x

∂ϕ

∂y
=

cos2 ϕ

x
=

cos2 ϕ

r sinϑ cosϕ
=

cosϕ

r sinϑ
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for the third term. Putting this together gives

∂

∂y
= sinϑ sinϕ

∂

∂r
+

cosϑ sinϕ

r

∂

∂ϑ
+

cosϕ

r sinϑ

∂

∂ϕ

∂

∂x
= sinϑ cosϕ

∂

∂r
+

cosϑ cosϕ

r

∂

∂ϑ
− sinϕ

r sinϑ

∂

∂ϕ

after a similar calculation for ∂
∂x . Inserting x = r sinϑ cosϕ and y = r sinϑ sinϕ into L̂z together with

these result into L̂z gives a very simple expression for L̂z because many terms cancel. The results for all
relevant orbital angular moment operators in spherical coordinates are

L̂x = i~
(

sinϕ
∂

∂ϑ
+

cosϕ

tanϑ

∂

∂ϕ

)
L̂y = i~

(
− cosϕ

∂

∂ϑ
+

sinϕ

tanϑ

∂

∂ϕ

)
L̂z = −i~ ∂

∂ϕ

and

Ĵ
2

= −~2

(
∂2

∂ϑ2
+

1

tanϑ

∂

∂ϑ
+

1

sin2 ϑ

∂2

∂ϕ2

)
L̂+ = ~ ei ϕ

(
∂

∂ϑ
+

i

tanϑ

∂

∂ϕ

)
L̂− = ~ e−i ϕ

(
− ∂

∂ϑ
+

i

tanϑ

∂

∂ϕ

)
listed without the derivation of these results.

4.5 Eigenvalues and Eigenfunctions of Orbital Angular Momentum

As shown above Ĵ
2

and Ĵ3 form a compatible set of observables, and the eigenvalue equations for the
general angular momentum operators are

Ĵ
2
|j,m〉 = j(j + 1)~2 |j,m〉 Ĵ3 |j,m〉 = m~ |j,m〉

with j = 0, 1
2 , 1,

3
2 , 2, ... and m = −j,−j + 1, ..., j − 1, j. For orbital angular momentum these equations

are written as

L̂
2
|`,m〉 = `(`+ 1)~2 |`,m〉 L̂z |`,m〉 = m~ |`,m〉

with the wave functions 〈r|`,m〉 = ψ`m(x, y, z) = ψ`m(r, ϑ, ϕ) of the system. The eigenvalue equations

−~2

(
∂2

∂ϑ2
+

1

tanϑ

∂

∂ϑ
+

1

sin2 ϑ

∂2

∂ϕ2

)
ψ`m(r, ϑ, ϕ) = `(`+ 1)~2 ψ`m(r, ϑ, ϕ)

−i~ ∂

∂ϕ
ψ`m(r, ϑ, ϕ) = m~ψ`m(r, ϑ, ϕ)

in spherical coordinates are written in terms of the so-called eigenfunction ψ`m(r, ϑ, ϕ). Therefore the
goal is to solve these two differential equations to determine the eigenvalues and eigenfunctions, and as
one sees they only depend on ϑ and ϕ such that one can set ψ`m(r, ϑ, ϕ) = f(r)Y m` (ϑ, ϕ). The above two

differential equations only determine Y m` (ϑ, ϕ) but not f(r) such that L̂
2

and L̂z build a set of commuting
observables but not a complete set of commuting observables. This only becomes an issue when solving
specific problems such as the hydrogen atom where the Hamiltonian is the additional observable.

To determine the allowed eigenvalues for the orbital angular momentum only the equation for L̂z with
∂
∂ϕ is needed and one can Y m` (ϑ, ϕ) = Fm` (ϑ)Gm` (ϕ). The remaining eigenvalue equation for L̂z becomes

∂

∂ϕ
Gm` (ϕ) = imGm` (ϕ)

and can be solved according to

df(x)

dx
= α f(x) ⇒ 1

f(x)

df(x)

dx
= α ⇒

∫
1

f(x)

df(x)

dx
dx =

∫
αdx

⇒ ln
(
f(x)) = αx+ c ⇒ f(x) = Aeαx with A = ec
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using separation of variables. This gives

Gm` (ϕ) = Aeimϕ Y m` (ϑ, ϕ) = Fm` (ϑ) eimϕ

where the constant A has been absorbed into Fm` (ϑ). Because ϕ ∈ [0, 2π) the condition Y m` (ϑ, 0) =
Y m` (ϑ, 2π) must be satisfied giving Fm` (ϑ)e0 = Fm` (ϑ)ei2πm or 1 = ei2πm. Thus, m must be an integer
and also ` must be an integer because m = −`,−` + 1, ..., ` − 1, `. The eigenvalues ` and m for orbital
angular momentum must therefore be integer and cannot be half-integers as found for the general angular
momentum. Only the eigenvalues for spin angular momentum can assume half-integer values.

In order to determine the eigenfunctions the two differential equations

−~2

(
∂2

∂ϑ2
+

1

tanϑ

∂

∂ϑ
+

1

sin2 ϑ

∂2

∂ϕ2

)
Y m` (ϑ, ϕ) = `(`+ 1)~2 Y m` (ϑ, ϕ)

−i~ ∂

∂ϕ
Y m` (ϑ, ϕ) = m~Y m` (ϑ, ϕ)

have to be solved. The solutions are the spherical harmonics. Normalization defined as∫
|ψ`m(x, y, z)|2 dx dy dz = 1

∫ ∞
0

r2 dr

∫ π

0

sinϑ dϑ

∫
|ψ`m(r, ϑ, ϕ)|2 dϕ = 1

for ψ`m(r, ϑ, ϕ) = f(r)Y m` (ϑ, ϕ) is typically divided such that∫ ∞
0

r2 |f(r)|2 dr = 1

∫ π

0

sinϑ dϑ

∫
|Y m` (ϑ, ϕ)|2 dϕ = 1

is used.

As derived above the part of the eigenfunction without r is Y m` (ϑ, ϕ) = Fm` (ϑ) eimϕ. Because raising

|`,m〉 with m = ` gives no state L̂+ |`, `〉 = 0 or

~ ei ` ϕ
(
∂

∂ϑ
+

i

tanϑ

∂

∂ϕ

)
F `` (ϑ) ei ` ϕ = 0 ei ` ϕ

∂

∂ϑ
F `` (ϑ) +

i

tanϑ
F `` (ϑ)

∂

∂ϕ
ei ` ϕ = 0

ei ` ϕ
∂

∂ϑ
F `` (ϑ) +

i

tanϑ
F `` (ϑ) i ` ei ` ϕ = 0

∂

∂ϑ
F `` (ϑ)− `

tanϑ
F `` (ϑ) = 0

in spherical coordinates. Using separation of variables and integration again gives∫
1

F `` (ϑ)

∂F `` (ϑ)

∂ϑ
dϑ =

∫
`

cosϑ

sinϑ
dϑ = `

∫
d(sinϑ)

sinϑ

with writing d(sinϑ) = cosϑ dϑ. The result becomes

ln
(
F `` (ϑ)

)
= ` ln(sinϑ) + a` = ln

(
(sinϑ)`

)
+ a` F `` (ϑ) = c` (sinϑ)` Y `` (ϑ, ϕ) = c` (sinϑ)` ei ` ϕ

with c` = ea` . After some calculations one gets

c` =
(−1)`

2` `!

√
(2`+ 1)!

4π
Y `` (ϑ, ϕ) =

(−1)`

2` `!

√
(2`+ 1)!

4π
(sinϑ)` ei ` ϕ

and this is the solution for m = `.

Using the lowering operator L̂− |`,m〉 = ~
√
`(`+ 1)−m(m− 1) |`,m− 1〉 successively

L̂− = ~ e−i ϕ
(
− ∂

∂ϑ
+

i

tanϑ

∂

∂ϕ

)
Y `` (ϑ, ϕ)

L̂−−→ Y `−1
` (ϑ, ϕ)

L̂−−→ Y `−2
` (ϑ, ϕ)

L̂−−→ ...
L̂−−→ Y −`` (ϑ, ϕ)

allows to get all the other solutions with the result

Y m` (ϑ, ϕ) =
(−1)`

2` `!

√
(2`+ 1)(`+m)!

4π(`−m)!
eimϕ (sinϑ)−m

d`−m

d(cosϑ)`−m
(sinϑ)2` (4.4)

after some tedious calculations. These functions are called the spherical harmonics.
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4.6 The Angular Equations of Central Potentials

A central potential only depends on the distance from the origin. In other words, the potential looks in
the center exactly the same in all directions. The reason why central potentials are so important is the
hydrogen atom because if one has two particles whose interaction only depends on the distance between
them then their relative motion can be described using a single fictitious particle that moves in a central
potential.

A general potential in spherical coordinates r = (r, ϑ, ϕ) is V (r) = V (r, ϑ, ϕ) and a central potential is
V (r) = V (r) such that it only depends on r. The Hamiltonian is

Ĥ =
p̂2

2m
+ V (r̂) = − ~2

2m
∇2 + V (r̂)

in the position representation on the right side. The Laplace operator in spherical coordinates is

∇2 =
1

r

∂2

∂r2
r +

1

r2

(
∂2

∂ϑ2
+

1

tanϑ

∂

∂ϑ
+

1

sin2 ϑ

∂2

∂ϕ2

)
such that the Hamiltonian becomes

Ĥ = − ~2

2m

[
1

r

∂2

∂r2
r +

1

r2

(
∂2

∂ϑ2
+

1

tanϑ

∂

∂ϑ
+

1

sin2 ϑ

∂2

∂ϕ2

)]
+ V (r) (4.5)

in spherical coordinates. Using L̂
2

the Hamiltonian can be written as

L̂
2

= −~2

(
∂2

∂ϑ2
+

1

tanϑ

∂

∂ϑ
+

1

sin2 ϑ

∂2

∂ϕ2

)
Ĥ = − ~2

2m

[
1

r

∂2

∂r2
r +

1

r2

(
− L̂

2

~2

)]
+ V (r)

or with three terms

Ĥ = − ~2

2m

1

r

∂2

∂r2
r +

1

2mr2
L̂

2
+ V (r)

where the first corresponds to the kinetic energy with respect to r, but the second term also corresponds

to the kinetic energy and is proportional to L̂
2
. This is rather nice because all the angular dependencies

are contained in this second term, and the angular part of kinetic energy is already solved by the spherical
harmonics (4.4).

This suggests that there is a close relation between central potentials and orbital angular momentum. In
addition to the commutation relations[

L̂
2
, L̂x

]
=
[
L̂

2
, L̂y

]
=
[
L̂

2
, L̂z

]
= 0

also [
Ĥ, L̂

2]
= 0

[
Ĥ, L̂x

]
=
[
Ĥ, L̂y

]
=
[
Ĥ, L̂z

]
= 0

are satisfied. This shows that angular momentum is a constant of motion for particles moving in central

potentials. The set of compatible observables usually used is {Ĥ, L̂
2
, L̂z}. The eigenvalue equations are

Ĥ ψ(r) = E ψ(r) L̂
2
ψ(r) = `(`+ 1)~2 ψ(r) L̂z ψ(r) = m`~ψ(r) (4.6)

for these three observables. The solution of a particle moving in a central potential can be rewritten as
the solution of these three simultaneous equations. The solution of two of them has been developed in
the context of orbital angular momentum with ` = 0, 1, 2, ... and m` = −`,−`+ 1, ..., ` such that only the
first equation still has to be solved. As shown above ψ(r) can be written as the product R(r)Y m` (ϑ, ϕ)
where Y m` (ϑ, ϕ) are the spherical harmonics (4.4). They are the same for any central potential, and only
the part R(r) remains to be solved. However, R(r) is different for different central potentials and has to
be solved separately.
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4.7 The Radial Equation of Central Potentials

Given the spherical harmonics for the angular solutions Y m` (ϑ, ϕ) the eigenfunctions of the Hamiltonian
can be written as ψ(r) = R(r)Y m` (ϑ, ϕ) and the eigenvalue equation becomes

Ĥ R(r) =

(
− ~2

2m

1

r

∂2

∂r2
r +

`(`+ 1)~2

2mr2
+ V (r)

)
R(r) = ER(r) (4.7)

because Ĥ is independent of ϑ and ϕ. This equation is called the radial equation, and it has to be
solved for each V (r) differently. However, the radial equation has general properties to be explored here.
Because the Hamiltonian depends on the quantum number ` the notation Ĥ` is used such that there is
an infinite list of Hamiltonians for ` = 0, 1, 2, ... as possible values. The eigenvalue equation is

Ĥ`Rk`(r) = Ek`Rk`(r)

where k covers the energy spectrum. Because m` as the angular quantum number associated with the z-
component of the orbital angular momentum does not feature in the eigenvalue equation, the eigenvalues
Ek` and the eigenfunctions Rk`(r) do not depend on m` but Ek` is at least (2`+ 1)-fold degenerate.

The eigenvalue equation can be rewritten as(
− ~2

2m

d2

dr2
+
`(`+ 1)~2

2mr2
+ V (r)

)
uk`(r) = Ek` uk`(r) with Rk`(r) =

1

r
uk`(r)

in a first step. Next, it is assumed that the system is well-behaved for the limit r → 0 such that

lim
r→0

(
r2 V (r)

)
= 0

meaning that the potential does not approach zero faster than V (r) ∼ 1
r . With this assumption it seems

that one looses some generality but in practice this is true for relevant potentials such as the Coulomb
potential. The limit

lim
r→0

(
`(`+ 1)~2

2mr2
+ V (r)− Ek`

)
=
`(`+ 1)~2

2mr2

is therefore dominated by the 1
r2 and has to be satisfied for ` = 0. The differential equation becomes(

− ~2

2m

d2

dr2
+
`(`+ 1)~2

2mr2

)
uk`(r) = 0

d2

dr2
uk`(r) =

`(`+ 1)

r2
uk`(r)

for the limit r → 0. With uk`(r) ∝ rα the differential equation boils down to α(α−1)rα−2 = `(`+1)rα−2

and α(α− 1) = `(`+ 1) with the two solutions α = `+ 1 and α = −`. This gives the two solutions

Rk`(r) ∝ r` Rk`(r) ∝ r−`−1

for the function Rk`(r). The second solution is not possible because ∇2ψ(r) ∼ δ(`)(r) cannot satisfy the
original eigenvalue equation. The reason for this impossible second solution is the result of the fact that
the Laplacian in spherical coordinates is only valid for r 6= 0. Thus, the only valid solution is Rk`(r) ∝ r`,
and one can set up the constraint uk`(0) = 0 to eliminate the other solution.

As discussed above the normalization of ψ(r) has been separated into the normalization of the radial part
and the angular part. Thus, ∫ ∞

0

|uk`(r)|2 dr = 1

is the normalization of the radial part.

A single particle in one dimension can be described by a Hamiltonian

Ĥ = − ~2

2m

d2

dx2
+ V (x)
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consisting of kinetic energy and potential energy. The radial Hamiltonian for a particle moving in three
dimensions is

Ĥ = − ~2

2m

d2

dr2
+
`(`+ 1)~2

2mr2
+ V (r) Veff(r) =

`(`+ 1)~2

2mr2
+ V (r) Ĥ = − ~2

2m

d2

dr2
+ Veff(r) (4.8)

and looks like the Hamiltonian of a particle moving in one dimensions in a so-called effective potential
Veff(r). To make the analogy complete with the one-dimensional case one can imagine an infinite wall
for negative values of r because of the constraint r ∈ [0,∞). This allows to apply all knowledge gained
for the one-dimensional case to the case of the radial motion in three dimensions. Using the effective
potential means forgetting that part of the potential energy is actually part of the kinetic energy.

Taking the Coulomb potential or other potentials with V (r) ∝ − 1
r then the effective potential Veff(r)

is V (r) for ` = 0 but is Veff(r) ∝ − 1
r + 1

r2 for ` > 0. The force due to the potential V (r) is attractive
for [0,∞) and the force due to Veff(r) is repulsive for small r where 1

r2 dominates over 1
r but gets more

and more attractive for larger r. Very far away from the center of the potential is Veff(r) ≈ V (r). This
effective potential is called centrifugal for ` > 0. Another name for the part of the effective potential
coming from kinetic energy is the angular momentum barrier because it pushes the wave function away
from the origin.

4.8 The Pauli Matrices

The Pauli matrices named after Wolfgang Pauli are three 2×2 matrices and their importance in quantum
mechanics cannot be overestimated. They play a central role for spin 1

2 particles, and they are the starting
point to study any quantum system that can be described with a two-dimensional state space.

The Pauli matrices are defined as

σ1 =

(
0 1

1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0

0 −1

)
(4.9)

and are Hermitian because of σk = σ†k as well as involutory because of σk = σ−1
k (or, equivalently, σ2

k = I).
Thus, they are not only Hermitian but also unitary. The determinant of all three matrices is detσk = −1,
and their trace is tr(σk) = 0.

The eigenvalues of the first Pauli matrix calculated from det(σ1 − λ I) = 0 are λ = ±1 as(
0 1

1 0

)
− λ

(
1 0

0 1

)
=

(
−λ 1

1 −λ

)
⇒ det

(
−λ 1

1 −λ

)
= (−λ)2 − 1 = 0 ⇒ λ = ±1

shows. The eigenvalues for the other Pauli matrices are the same, and with the eigenvalue equation
σk v = λ v the eigenvalues and eigenvectors are

σ1 : λ = +1 : v+ =
1√
2

(
1

1

)
λ = −1 : v− =

1√
2

(
1

−1

)

σ2 : λ = +1 : v+ =
1√
2

(
1

i

)
λ = −1 : v− =

1√
2

(
1

−i

)

σ3 : λ = +1 : v+ =

(
1

0

)
λ = −1 : v− =

(
0

1

) (4.10)

for all three Pauli matrices.

The commutation relations demonstrated with the example for [σ1σ2] = σ1σ2 − σ2σ1

[σ1, σ2] =

(
0 1

1 0

)(
0 −i
i 0

)
−

(
0 −i
i 0

)(
0 1

1 0

)
= 2i

(
1 0

0 −1

)
= 2i σ3
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are

[σ1σ2] = 2i σ3 [σ2σ3] = 2i σ1 [σ3σ1] = 2i σ2 (4.11)

and all others vanish. Using the Levi-Civita symbol εjk` the commutator relations can be written as

[σjσk] = 2i

3∑
`=1

εjk`σ` j, k = 1, 2, 3

in compact form.

The anticommutation relations demonstrated with the example for {σ1σ2} = σ1σ2 + σ2σ1

{σ1σ2} =

(
0 1

1 0

)(
0 −i
i 0

)
+

(
0 −i
i 0

)(
0 1

1 0

)
=

(
0 0

0 0

)
are

{σ1σ2} = {σ2σ3} = {σ3σ1} = 0 {σ1σ1} = {σ2σ2} = {σ3σ3} = 2I (4.12)

or with the Kronecker delta symbol

{σjσk} = 2δjk I j, k = 1, 2, 3

in compact form.

Quantum operators associated with two-state systems can be written in terms of 2× 2 matrices, and any
2× 2 matrix can be written in terms of the identity matrix I and the three Pauli matrices. Thus, these
four matrices build a basis for the complex 2× 2 matrices. The identity matrix is usually called σ0.

A given matrix

A =

(
A11 A12

A21 A22

)
Ajk ∈ C

can be written as d0σ0 + d1σ1 + d2σ2 + d3σ3 with dµ ∈ C such that(
A11 A12

A21 A22

)
= d0

(
1 0

0 1

)
+ d1

(
0 1

1 0

)
+ d2

(
0 −i
i 0

)
+ d3

(
1 0

0 −1

)
=

(
d0 + d3 d1 − id2

d1 + id2 d0 − d3

)

must be satisfied. To form a basis the σµ must be linearly independent, and any complex 2 × 2 matrix
can be written as a linear combination of the σµ. For the linear independence one has to show that

d0σ0 + d1σ1 + d2σ2 + d3σ3 = 0 ⇒ dµ = 0

must be true. This follows from d0 + d3 = d1 − id2 = d1 + id2 = d0 − d3 = 0. With

A11 = d0 + d3 A12 = d1 − id2 A21 = d1 + id2 A22 = d0 − d3

the coefficients dµ become

d0 =
1

2
(A11 +A22) d1 =

1

2
(A12 +A21)

d2 =
i

2
(A12 −A21) d3 =

1

2
(A11 −A22)

by adding and subtracting the above equations for Ajk. The coefficients dµ are usually complex numbers.
This is a very useful result as it turns out that the Pauli matrices are a convenient set of matrices to
work with in many quantum problems involving a two-dimensional state space. The description of the
spin angular momentum in spin 1

2 particles such as the electron is an example.
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The matrix elements must satisfy A11, A22 ∈ R and A∗21 = A12 for a Hermitian 2× 2 matrix. This means

d0 =
1

2
(A11 +A22) ⇒ d0 ∈ R

d1 =
1

2
(A12 +A21) =

1

2
(A∗21 +A21) = Re{A21} ⇒ d1 ∈ R

d2 =
i

2
(A12 −A21) =

i

2
(A∗21 −A21) = Im{A21} ⇒ d2 ∈ R

d3 =
1

2
(A11 −A22) ⇒ d3 ∈ R

and the coefficients dµ are therefore all real for a Hermitian matrix.

4.9 Energy Eigenvalues of Two-State Quantum Systems

The Hamiltonian of a two-state quantum system is

Ĥ =

(
H11 H12

H21 H22

)
H11, H22 ∈ R H∗21 = H12

because Ĥ is Hermitian. The eigenvalue equation is Ĥ |ψ〉 = λ |ψ〉 and the characteristic equation to

solve is det
(
Ĥ − λ I

)
= 0

det

(
H11 − λ H12

H21 H22 − λ

)
= (H11 − λ)(H22 − λ)−H12H21 = 0

= λ2 − λ(H11 +H22) +H11H22 −H12H21 = 0

in order to find the eigenvalues. Its solution is

λ =
1

2
(H11 +H22)± 1

2

√
(H11 +H22)2 − 4(H11H22 −H12H21)

=
1

2
(H11 +H22)± 1

2

√
(H11 −H22)2 + 4|H12|2

using H12H21 = |H12|2 because of H∗21 = H12.

The notation for the energy eigenvalues is usually E instead of λ, and they are

E+ =
1

2
(H11 +H22) +

1

2

√
(H11 −H22)2 + 4|H12|2

E− =
1

2
(H11 +H22)− 1

2

√
(H11 −H22)2 + 4|H12|2

(4.13)

because a two-state quantum system can only have two eigenvalues. The eigenvalue equation is therefore
Ĥ |ψ±〉 = E± |ψ±〉 for such a quantum system which is often called a “2-level system”.

The degenerated case E+ = E− means that (H11−H22)2+4|H12|2 = 0 and therefore (H11−H22)2 = 0 and

4|H12|2 = 0 because both terms are non-negative. Thus, the conditions H11 = H22 and H12 = H21 = 0
must be satisfied if the spectrum is degenerate. In other words, the Hamiltonian must have the very
simple form Ĥ = E I if the system has only one eigenvalue E.

The Hamiltonian Ĥ can be written in the form d0σ0+d1σ1+d2σ2+d3σ3 with real expansion coefficients dµ
as shown above. To simplify notations σ = (σ1, σ2, σ3) and d = (d1, d2, d3) are used, and the Hamiltonian
can be written as Ĥ = d0σ0 + d · σ. The eigenvalue equation becomes

det

(
d0 + d3 − λ d1 − id2

d1 + id2 d0 − d3 − λ

)
= [(d0 − λ) + d3][(d0 − λ)− d3]− (d1 − id2)(d1 + id2) = 0

12



arranged in a convenient way. Using (a+ b)(a− b) = a2 − b2, this equation can be rewritten as

(d0 − λ)2 − d2
3 − (d2

1 − (id2)2) = (λ− d0)2 − d2
1 − d2

2 − d2
3 = 0

(λ− d0)2 = d2
1 + d2

2 + d2
3 ⇒ λ− d0 = ±

√
d2

1 + d2
2 + d2

3

λ = d0 ±
√
d2

1 + d2
2 + d2

3 = d0 ± |d|

such that the two energy eigenvalues are

E+ = d0 +
√
d2

1 + d2
2 + d2

3 = d0 + |d| E− = d0 −
√
d2

1 + d2
2 + d2

3 = d0 − |d| (4.14)

written in terms of the expansion coefficients for the Pauli matrices.

4.10 Energy Eigenstates of Two-State Quantum Systems

The eigenvalue equation for a two-state quantum system is Ĥ |ψ±〉 = E± |ψ±〉 where Ĥ is the Hamiltonian
and E± and |ψ±〉 are the eigenvalues and eigenstates, respectively. The eigenvalues can either be written
in terms of the matrix elements Hjk as in (4.13) or in terms of the expansion coefficients dµ as in (4.14).

The equation for the eigenstates |ψ±〉 is

(d0σ0 + d · σ) |ψ±〉 = E± |ψ±〉 d · σ |ψ±〉 = E± |ψ±〉 − d0σ0 |ψ±〉 = E± |ψ±〉 − d0 |ψ±〉

because σ0 = I. Calling the scalar E± − d0 = λ± gives

d · σ |ψ±〉 = λ± |ψ±〉

showing that the energy eigenstates |ψ±〉 are also eigenstates of the operator d · σ. This operator is

d1

(
0 1

1 0

)
+ d2

(
0 −i
i 0

)
+ d3

(
1 0

0 −1

)
=

(
d3 d1 − id2

d1 + id2 −d3

)

in matrix form. Changing coordinates from (d1, d2, d3) to (d, ϑ, ϕ) with

d1 = d sinϑ cosϕ d2 = d sinϑ sinϕ d3 = d cosϑ

will turn out to be helpful. The operator d · σ becomes

d · σ =

(
d cosϑ d sinϑ(cosϕ− i sinϕ)

d sinϑ(cosϕ+ i sinϕ) −d cosϑ

)
=

(
d cosϑ d sinϑ e−iϕ

d sinϑ eiϕ −d cosϑ

)

in the new coordinates, and

det(d · σ − λ I) =

(
d cosϑ− λ d sinϑ e−iϕ

d sinϑ eiϕ −d cosϑ− λ

)
= (d cosϑ− λ)(−d cosϑ− λ)− d sinϑ e−iϕd sinϑ eiϕ

= −(d cosϑ− λ)(d cosϑ+ λ)− d2 sin2 ϑ

= −d2 cos2 ϑ+ λ2 − d2 sin2 ϑ = 0

λ2 = d2(cos2 ϑ+ sin2 ϑ) = d2

has to be solved to find the eigenvalues of the operator d · σ. The solution is simply λ± = ±d = ±|d|
because d2 = d2

1 + d2
2 + d2

3 and cos2 ϑ+ sin2 ϑ = 1. The result could have been found more easily because
E± = d0±|d| has been determined above after setting λ± = E±−d0. However, the detour with this result
for the eigenvalues will turn out to be helpful in the following because the eigenstates can be determined
from d · σ |ψ〉 = d |ψ〉 using the coordinates (d, ϑ, ϕ).
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The equation for λ+ = +d is d · σ |ψ+〉 = d |ψ+〉 can be written as(
d cosϑ d sinϑ e−iϕ

d sinϑ eiϕ −d cosϑ

)(
ψ1+

ψ2+

)
= d

(
ψ1+

ψ2+

)
⇒

(
d cosϑψ1+ + d sinϑ e−iϕ ψ2+

d sinϑ eiϕ ψ1+ − d cosϑψ2+

)
= d

(
ψ1+

ψ2+

)

leading to

d cosϑψ1+ + d sinϑ e−iϕ ψ2+ = dψ1+ ⇒ (1− cosϑ)ψ1+ = sinϑ e−iϕ ψ2+

where d can be canceled. Using cos(α) = cos2(α2 )− sin2(α2 ) and sin(α) = 2 sin
(
α
2

)
(cos α2 ) called double-

angle formulae, one can write

1− cosϑ = 1− cos2

(
ϑ

2

)
+ sin2

(
ϑ

2

)
= 2 sin2

(
ϑ

2

)
sinϑ = 2 sin

(
ϑ

2

)
cos

(
ϑ

2

)
and the equation becomes

2 sin2

(
ϑ

2

)
ψ1+ = 2 sin

(
ϑ

2

)
cos

(
ϑ

2

)
e−iϕ ψ2+ ⇒ sin

(
ϑ

2

)
ψ1+ = cos

(
ϑ

2

)
e−iϕ ψ2+

such that the two eigenstates of the operator d · σ and therefore also of the Hamiltonian Ĥ with the
eigenvalues E± given in (4.14) are

λ+ = d

E+ = d0 + |d|

}
: |ψ+〉 =

(
cos
(
ϑ
2

)
e−iϕ

sin
(
ϑ
2

) )
λ− = −d
E− = d0 − |d|

}
: |ψ−〉 =

(
− sin

(
ϑ
2

)
e−iϕ

cos
(
ϑ
2

) )
(4.15)

given here without the derivation for the eigenvalue λ−.

To understand the usefulness of the change of variables from (d1, d2, d3) to (d, ϑ, ϕ) note that the eigen-
states are given in terms of trigonometric functions. In the original parameters the mathematical expres-
sions would look very complicated. For most quantities of interest such as expectation values the answers
depend on simple functions of ϑ and ϕ but not on ϑ

2 .

To check whether the two eigenstates |ψ±〉 are orthonormal, the 〈ψ±|ψ±〉 have to be checked. With

〈ψ+|ψ+〉 =
(

cos
(
ϑ
2

)
eiϕ sin

(
ϑ
2

))(cos
(
ϑ
2

)
e−iϕ

sin
(
ϑ
2

) )
= cos

(
ϑ

2

)
eiϕ cos

(
ϑ

2

)
e−iϕ + sin2

(
ϑ

2

)
= 1

and similarly for 〈ψ−|ψ−〉 = 1 and 〈ψ+|ψ−〉 = 0 the two energy eigenstates build indeed an orthonormal
basis for two-state systems.
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