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Abstract

Introductory courses on quantum mechanics usually present free particles and other closed systems
but no composite systems. The goal here is to introduce quantum mechanics of many systems, explore
why measuring disturbs the observed system, and figure out where the classical limit in the everyday
life comes from. Quantum noise and decoherence play an important role. Tobias Osborne from the
Leibniz Universität Hanover gave a series of 13 lectures covering this topic in 2015. His lectures
were available on YouTube at the time this transcript has been assembled and may as “Theory of
Quantum Noise and Decoherence” still be available today.

1 Introduction to Quantum Mechanics

1.1 Composite Quantum Systems and Measurements

Quantum mechanics goes beyond free particles and closed systems and also covers composite system
with many subsystems. In contrast to classical physics one cannot copy quantum information due to
the no-cloning theorem. Thus, if one wants to gain information about some closed quantum system, one
has to interact with it and this will unavoidably have some effect on the system. The act of measuring
disturbs the system. In everyday classical physics one also encounters such effects. Gaining information
from the stock market and acting on it, for example, will cause disturbances as other traders react on
this action. Also the observer effect in social psychology shows this phenomenon when the participants
of an experiment know that they are observed and therefore behave differently. In quantum mechanics,
however, is the fact that the measurement disturbs the system fundamental.

When one looks at a quantum system with the eyes as the everyday apparatus for measurements, the
system looks classical. Thus, the question is where does the classical limit come from. The reason, as
will turn out, is quantum noise and decoherence which are a consequence of the measuring process and
the fact that this process disturbs the system.

1.2 Kinematics of Isolated Quantum Systems

Physical experiments are interpreted here as consisting of two steps where preparation is followed by
measurement. In classical physics there is never a real need to discuss measurement because one can
copy information freely. In quantum mechanics the measurement always disturbs the system as mentioned
above. Preparation consists of all steps performed to bring the system in a certain state. In more detail,
preparation is the set of actions that determines all probability distributions of any possible measurement.
Different preparations can lead to identical probability distributions. A state describes all the details (and
no more) relevant for subsequent measurements, or, in other words, a state is the data sufficient to describe
the probability distributions of all subsequent measurements.

Quantum mechanics is an example of a statistical theory meaning that one can only at best describe
probability distributions of possible outcomes of measurements. It is therefore not a deterministic theory
leading to many philosophical question which, however, will be ignored here.
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Mathematically the division of preparation and measurement is represented as observables which are
more fundamental than states where observables are hermitian elements of the observable algebra A
(here in form of n×n matrices). A C algebra is a closed set under addition and multiplication as well as
multiplication by scalars (elements of C). Each element A ∈ A has an adjoint A†. An element E ∈ A is
positive if there is a X ∈ A such that E = X†X. Here A will always be the bounded operators on some
Hilbert space H. The set of these bounded operators is written as B(H). The simplest example (apart
from the trivial system) is the qubit where the set of all observables Ah is

Ah ⊂ A ∼= M2(C) =

{(
a b
c d

) ∣∣∣∣ a, b, c, d ∈ C
}

Ah ≡
{
X ∈ A

∣∣X† = X
}

(1.1)

and is called the set of hermitian 2× 2 matrices.

Observables are an idealization while in an experiment one has some detector such as a photon counter
making click. One can break down any detector in a sequence of click or no click objects. The voltage
on a wire looks like a continuous signal but can also be seen as a sequence of clicks averaged over time
bins. Therefore, here all detections are considered clicks.

Further, measurements themselves (not observables) are described by assigning to each outcome of a
device an effect E ∈ A which satisfies

0 ≤ E ≤ I (1.2)

where A ≤ B holds if and only if B − A is positive defined above as B − A = X†X for some X
in A. An example is the photon counter where E = |0〉 〈0| corresponds to no click and consequently
F = I − E = I − |0〉 〈0| corresponds to some clicks. That is how measurements are described. There is
a box doing the measurement which delivers classical information such as there was a click or there was
no click. To each possible outcome an effect is assigned. The outcome is not always deterministic.

A state ω on A is a positive normalized linear functional on A. That is

ω : A → C is linear ω(X†X) ≥ 0 ω(I) = 1 (1.3)

because states are supposed to assign probabilities to outcomes. Thus, an ω has to eat measurements
and give probabilities. One can do no experiment at all, and the effect is I satisfying (1.2). The emphasis
here is to the minimal structure, and describing states with Hilbert spaces gives only a subset of states.
The missing states are the mixed states. In the real world there are no closed systems but there is noise
and other imperfections leading to those mixed states.

If there is a detector that clicks then the question is what the empiric probability is that one measures a
click. The probability of outcome E measured on a state ω is defined as

P (E) = ω(E) (1.4)

where ω(E) is usually written as 〈E〉 in quantum mechanics.

If somebody demands to measure the observable A then one has to design an apparatus which assigns an
effect E for every possible outcome of the observable A. Thus, observables have to be linked to effects.
One labels the outcomes of an experiment corresponding to an observable A ∈ A by an index α where
α can be continuous. One assigns to each α an effect Eα so that the probability Pα of the outcome
corresponding to α is Pα ≡ ω(Eα). To ensure

∑
α Pα = 1 it is required that

∑
αEα = I. (The use of the

sum for continuous α is not correct but most cases in the following will use finite indices α.)

A collection {Eα}α of effects such that
∑
αEα = I is called POVM (positive operator-valued measure).

The precise connection between observable A and effect Eα is via

A =
∑
α

aαEα (1.5)

which is the eigenvalue-eigenvector decomposition with the eigenvalues aα and the spectral projection
Eα. Every observable gives rise to a POVM, but not every POVM comes from an observable. It is a more
general concept. This is a case where this extra generality is very useful, for example, as for homodyne
and heterodyne detection in quantum optics.
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For finite-dimensional systems such as qubits one can always represent states ω : A → C as density
operators via

ω(A) = tr(ρA) (1.6)

where the density operator ρ satisfies tr(ρ) = 1 and ρ ≥ 0 due to (1.3). A state is pure if it cannot be
written as ω = (1−ρ)ω′+ρω′′ with 0 < ρ < 1 and ω′ 6= ω′′. For finite-dimensional systems one can prove
that this definition implies that a density operator corresponds to a pure state if and only if the density
operator is a projection. This gives the connection to the Hilbert space. However, this is not true for
all infinite-dimensional systems because ω(A) = tr(ρA) cannot be used when the trace becomes infinity.
Thus, the representation (1.3) is always valid while the representation with the density operator (1.6) is
especially useful for finite-dimensional systems.

For finite-dimensional quantum systems ω is pure if and only if one can write ω(·) ≡ tr(ρ ·) with the
density operator being a projection ρ = |ψ〉 〈ψ| where |ψ〉 ∈ H. Rays in Hilbert spaces are another way
of talking about projections but |ψ〉 〈ψ| is a more elegant way to say that a phase cancels.

For the qubit as an example all states ω may be represented by 2 × 2 matrices satisfying ρ ≥ 0 and
tr(ρ) = 1

ρ =
1

2

(
1 + x3 x1 − ix2

x1 + ix2 1− x3

)
with x ∈ R3. The condition tr(ρ) = 1 is obviously fulfilled, and the condition ρ ≥ 0 requires |x|2 ≤ 1
because the eigenvalues of this matrix are λ1,2 = 1±

√
x2

1 + x2
2 + x2

3. Thus, x = (x1, x2, x3) is an element
of a ball with radius 1 in R3 called the Bloch sphere. This is a very significant result because the abstract
constraint ρ ≥ 0 is translated to something geometrical. Every qubit state corresponds to a point in the
Bloch sphere, and every point in the Bloch sphere corresponds to a qubit state. Measurements on these
states all have a geometrical interpretation. (However, there is no nice geometrical representation for
qutrits.) Considering the effect of the spin pointing up

E =

(
1 0
0 0

)
=

1

2
(I + σz)

where σz is the third of the Pauli matrices

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(1.7)

the probability is P (E) = 1
2 (1 +x3) according to (1.4) and (1.6). One can find this number also from the

Bloch sphere.

Another more general way to calculate the probability is by looking at pure states. A necessary but not
sufficient condition for a pure state is ρ2 = ρ. Thus, trace of ρ and trace of ρ2 must be 1 leading to(

I + r · σ
2

)2

=

(
I + r · σ

2

)
where r ∈ R. The left side of this equation has 16 terms and the right side 4. The result for these
equations is |r| = 1. This means that the pure states in the graphical representation are the points on the
surface of the Bloch sphere. Because tr(ρ) is a linear functional on the algebra, convex combinations of
the states correspond exactly to convex combinations in the Bloch sphere. The points on the boundary
are the points one cannot write as a convex combination of two other points. One can do these calculation
for other dimensions but one gets a horrible disgusting surface.

1.3 Kinematics of Composite Quantum Systems

So far only isolated quantum systems have been described as illustrated in the figure
on the right side with two connected steps. The preparation step is the object on
the left where ω is a positive linear functional on A and the measurement step is the
object on the right where E is a positive element of A.
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The question is how to put them together to get composite systems such as the
one shown on the right side. In other words, the question is what mathematical
objects represent joint measurements on more than one quantum system. The
observable algebra for a quantum system AB combining the two quantum systems
A and B with observable algebra A and B, respectively, is the tensor product
A⊗ B. The effect E ⊗ F in A⊗ B means that E and F both occur.

Two qubits A and B as an example have each the 2× 2 matrices as their observables. Thus, A ∼= M2(C),
B ∼= M2(C), and A⊗ B ∼= M2(C) ⊗M2(C) ∼= M4(C), and the combined system of two systems with two
possible outcomes is a single isolated system with four possible outcomes. When talking about subsystems
one attaches a kind of locality structure to the questions one can ask. As soon as one zooms out one can
see the combined subsystems as one single system. However, not all M ∈ A ⊗ B are of the form E ⊗ F .
The fact that not all yes-no questions one can ask about the combined system are of the form E⊗F has
a kind of dual structure on the states, and this phenomenon is called quantum entanglement.

The states of a composite system combining A and B with algebras A and B are defined as

ω : A⊗ B → C is linear ω(X†X) ≥ 0 ω(I⊗ I) = 1 (1.8)

similar to (1.3). If there is an underlying Hilbert space H ≡ HA ⊗ HB there is a simple set of states on
A ⊗ B called product states coming from |φA〉 ⊗ |φB〉 where |φA〉 ∈ HA and |φB〉 ∈ HB. However, there
are more states than only product states, and these additional states are called entangled states. The
fact that there are entangled states leads to the dramatic effects of quantum noise. Thus, the fact that
there is superposition in products is the reason why there is decoherence. There is entanglement fighting
with entanglement because noise comes from non-product states within the environment and the way
quantum computers work comes from non-product states within a quantum system. Product states ω of
the composite system AB are of the form

ω(X ⊗ Y ) = ωA(X)ωB(Y ) ∀X ∈ A ∀Y ∈ B (1.9)

where pure product states have density operators ρ = |φA〉 〈φA| ⊗ |φB〉 〈φB| = ρA ⊗ ρB. States which are
not products are correlated. Note that there are mixed states which cannot be written as a product but
are not entangled.

As an example, the state ρ = p |00〉 〈00|+ (1− p) |11〉 〈11| of two qubits with 0 ≤ p ≤ 1 ensures that both
qubits are 0 with probability p or both qubits are 1 with probability 1− p. This represents a correlated
pair of coins. This is a classically correlated state and does not involve entanglement. Thus, a product
at the level ρA ⊗ ρB is not the same as a product at the level |φA〉 ⊗ |φB〉.

There should be a legal state ωAE of the subsystem A assuming a big quantum system E
where one would like to look only at part A of it as in the figure on the left. That might be,
for example, the local quantum state in a lab ignoring the rest of the universe. The state
ωAE when reduced to observables which are non-trivial only on A is of the form X ⊗ IE. The

corresponding state

ωA(XA) = ωAE(XA ⊗ IE) (1.10)

is called a reduced state, and for density operators ρA for ωA is defined via

tr(ρAX) = ωA(X ⊗ IE) = tr(ρAEXA ⊗ IE)

ρA = trE(ρAE)

trE : ρAE → ρA =
∑
j

(IA ⊗ |jE〉)ρAE(IA ⊗ |jE〉)
(1.11)

where |jE〉 is an orthonormal basis of E. The trace trE is called the partial trace, and ρA is called the
reduced density operator or the marginal.

Quantum entanglement and quantum noise are in an abstract sense the same thing. Quantum mechanics
allows the existence of pure states of big systems which look mixed (not pure) in any reduced subsystem.
That does not have an analog in probability theory because the composite system of two coins, for
example, has the pure states head-head, head-tail, tail-head, tail-tail and each of these assign a definite
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state to the subsystems. Quantum mechanics on the other hand allows pure states that do not assign a
definite state to the subsystems. For quantum noise this means that the overall system can be completely
pure at zero temperature evolving in a unitary fashion with no noise whatsoever but nonetheless if one
looks only at a part of it the system looks very noisy.

A useful tool here is the Schmidt decomposition which states that for any vector |ψ〉 ∈ HA ⊗ HB with
d = min(dim(HA),dim(HB)) there exists an orthonormal basis {|ej〉}dAj=1 and {|fj〉}dBj=1 of HA and HB,
respectively, such that

|ψ〉 =

d∑
j=1

√
pj |ej〉A |fj〉B (1.12)

with 0 ≤ pj ≤ 1 and
∑
j pj = ‖|ψ〉‖2 where the values

√
pj are called Schmidt coefficients. This is a

constructive statement because there exists an algorithm to work out this decomposition. Product states
are exactly of this form where p1 = 1 and pj = 0 for j 6= 1, and the algorithm allows to determine whether
a state is a product state or not.

As an example the Schmidt decomposition shows that the superposition of two qubits

|ψ〉AB =
1

2

(
|00〉+ |01〉+ |10〉+ |11〉

)
AB

=

(
|0〉+ |1〉√

2

)
A

⊗
(
|0〉+ |1〉√

2

)
B

is a product state. However, the superposition of two qubits

|ψ〉AB =
1

2

(
|00〉+ |11〉

)
AB

is an EPR type state and cannot be written as a product state because it is already in the form (1.12) of
the Schmidt decomposition.

A state |ψ〉 of AB is entangled if its Schmidt decomposition involves two or more terms. That is very
distinct from the notion of correlated state. The question of whether a correlated state is entangled is a
hard question and nobody knows the answer. A handy result is, however, that if |ψ〉AB is a state of AB
with Schmidt decomposition (1.12) then

ρA =

d∑
j=1

pj |ej〉 〈ej | (1.13)

showing how the reduced state can be worked out from a pure state of a composite system.

1.4 Dynamics of Quantum Systems

The dynamics of a system has to do with time. If one knows how to represent a
measurement at time t0 then the fundamental question is how to represent the
same measurement some time t > t0 later. In addition to the preparation step
first and the measurement step last an evolution step E is inserted between these two steps as illustrated
in the figure on the right side.

There are two ways to turn this back into a kinematic question. One possibility is to combine the evolution
step with the preparation step called the Schrödinger picture such that the new question is how evolution
leads to a different effective state ω′, and the other possibility is to combine it with the measurement step
called the Heisenberg picture such that the new question is how evolution leads to a measurement of a
different effective observable E′. There are also various interaction pictures possible combining different
parts of the evolution with preparation and measurement.

The first task is to explore evolution in time for closed systems and reversible dynamics without inter-
actions with the environment. An evolution certainly should neither create nor destroy probabilities but
should preserve probability. Evolution also ought to be linear. If one flips a coin, does a different prepa-
ration depending on the outcome and subjects that to an evolution, then this should be the same as first
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evolving the system and then flipping a coin. Thus, evolution is a linear transformation of observables
such that U : A → A and U(A) ∈ A (Heisenberg picture) or of states such that U∗ : S(A) → S(A) and
U∗(ρ) ∈ S(A) where S(A) are the states of A (Schrödinger picture) subject to

tr
(
ρ U(A)

)
= tr

(
U∗(ρ)A

)
U(I) = I U(X†X) = Y †Y ∀X ∈ A (1.14)

in order to ensure that both pictures lead to the same evolution, to preserve probabilities and to evolve
effects into effects. The third condition is equivalent with U(X†X) ≥ 0. This is the bare minimum an
evolution should satisfy.

The closed systems and reversible dynamics are exactly those evolutions that are represented as unitary
operators. In the Heisenberg picture this means U(A) ≡ U†AU for some unitary operator U ∈ B(H)
but this is only true for finite-dimensional systems. In infinite dimensions there exist reversible dynamics
that might not be representable as unitaties U ∈ B(H). This is an issue with an infinite tensor product
of qubits.

If U depends homogeneously on a parameter t ∈ R (called “time”) such that Ut+s ≡ Ut(Us) for all s, t ∈ R
then

d

dt
Ut = −iH Ut (1.15)

where H is the Hamiltonian. This is the Schrödinger equation for the situation in closed systems.

The aim is to study dynamics of composite quantum systems. A system A
that may be an atom in some trap is embedded in a bigger system E called
the environment. This can model the universe E where A is whatever one
can control. One can usually separate an experiment into a part A one can

control and a part E one cannot control. The universe is assumed to undergo reversible evolution Ut as
in the figure on the left side although black holes may turn out to be irreversible. Assuming that the
universe is reversible then the question is how does the evolution restricted to A look like, and the answer
to the question whether Ut restricted to A is also reversible is that this is not always the case. That is,
for example, how thermodynamical processes work. There is some reservoir E and a closed system A,
and then A is opened and starts interacting with the reservoir. The subsystem A can change because
particles can flow in, and A′ may become completely irreversible.

Open systems are systems that interact with other systems such as the environment. Irreversible dynamics
usually occur when one considers only part of a larger system undergoing reversible dynamics. The most
general irreversible dynamics allowed by quantum mechanics can be axiomatically characterized in order
to define what a legal evolution E called channel in quantum mechanics is. A channel E converting
systems with observable algebra A to systems with observable algebra B is a linear operator E : B → A
in the Heisenberg picture (looking as if going in the wrong direction) which is

(i) E(IB) = IA
(ii) ∀E ∈ B ⊗ (M)n(C) and E ≥ 0⇒ E ⊗ In(EA,n) ≥ 0 ∀n ∈ N

(1.16)

where In is the identity channel for an n-level system. Condition (i) requires E to be unit preserving
meaning that probabilities are preserved, and condition (ii) defines what completely positive (CP) means.

The figure on the right side shows this situation in the Heisbenberg picture where
the channel E is part of the measurement. Thus, E better has the property that
it takes an observation one can make on B and gives an observation one can
make on A. Even though times goes from left to right the actual evolution E
maps B to A. Therefore (i) requires that E maps IB to IA.

The explanation for (ii) is that if one adds stuff in and does nothing to them
as illustrated in the figure on the right side then that should lead to legal mea-
surements. One does the original measurement completely isolated from the
environment. There is another laboratory next door that does not interact with
this experiment at all. This is modeled as in the figure where the experiment is done in one lab and the
lab next door does nothing. This may look obvious but there exist channels such as the transpose channel
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A→ AT that is unit preserving and takes positive operators to positive operators but is not completely
positive. Therefore condition (ii) is needed.

The two conditions (i) and (ii) in (1.16) are the bare minimum required for a valid evolution of a quantum
system. Unitary operations for closed systems satisfy these requirements. Thus, E(X) = U†(X)U should
be a legal evolution. With U†IU = I condition (i) is satisfied, and since the channel E ⊗ I(E) becomes
(U† ⊗ In)E(U ⊗ In) = (U† ⊗ In)X†X(U ⊗ In) = X ′†X ′ ≥ 0 for some X ′ also (ii) is satisfied.

The axiomatic approach is not the only possibility to characterize valid evolutions and there is an alter-
nate approach to defining the most general dynamical process allowed in quantum mechanics. One can
enumerate the allowed operations.

Visualized with the figures on the right side the three possible cases are:

(1) Tensor with system in specific state: ωA → ωA ⊗ σB ∀σB (Schrödinger
picture)
This operation is not resulting from unitary dynamics because there is a
state of a smaller system being transformed to a state of a bigger system.

(2) Unitary transformations: U(X) ≡ U XU† (Schrödinger picture)
This is the case for a closed system in quantum mechanics.

(3) Reduction to a subsystem: If one has state ωAB on A⊗B then one can build
the effective or reduced state ωA via ωA(XA) = ωAB(XA ⊗ IB)

One can mix these three allowed operations and compose
more complicated operations as in the figure on the left side.
A qubit B can be added to the qubit A in a first step and a

unitary evolution can be added in a second step. As a third step – not shown in the figure – a third
qubit C might be added adjoined with another unitary evolution only involving B and C in a fourth
step. Lastly, one might throw away A by just ignoring it and so on.

The kind of operations one can achieve by combining these three valid evolution steps correspond exactly
to the axiomatic approach (1.16). Unfortunately this is only true for finite-dimensional systems but is
still a powerful result.

This is the theorem by Stinespring: Let E : Mn(C)→ Mm(C) be a completely positive map. Then there
is an ` ∈ N and an operator V : Cm → Cn⊗C` in the Heisenberg picture such that E(X) = V †(X ⊗ I`)V
and the vectors of the form (X ⊗ I)V |φ〉 with |φ〉 ∈ Cm span Cn ⊗ C`. Decomposition is unique up to
unitary transformations on C`. The operator V is not an unitary but an isometry as it satisfies V †V = I.

An isometry (satisfying V †V = I but V V † = I not necessarily) is really
just an unitary acting on a bigger space where one ignores part of the
bigger space. The isometry V takes some m-dimensional vector to some
n ⊗ `, and one can always write that as an unitary U with some input state |0〉 (assuming that the
numbers n, `, m and the dimension of |0〉 match) as illustrated in the figure on the right.

The theorem states that every completely positive map on a finite-
dimensional system E can be represented as a unitary. In more detail,
every transformation E† allowed by quantum mechanics described in the

Schrödinger picture can be written as tensoring in an additional system in state zero some unitary op-
eration followed by a reduction to a subsystem as shown in the figure on the left side. The three steps
tensoring in a new ancella subsystem in a state |φ〉, performing a unitary operation U , and reducing to
a subsystem are exactly the three allowed operations listed above. The reduction is shown as the lower
outgoing line with a cross.

The theorem is very remarkable. If one demands the bare minimum (1.16) required by quantum mechanics
that it satisfies the two conditions (i) and (ii) then any such map can be written as a composition of
three of these allowed operations. This is what allows physicists to forget about the two conditions (i)
and (ii) in (1.16) and describe all allowed operations in quantum mechanics as combinations of unitary
evolutions and reductions of subsystems. Thus, the system is prepared in some state, it is uncoupled with
the environment, interacts with the environment and then one throws away part of the system. Sadly,
however, this is only true for finite-dimensional systems as already mentioned above. There are processes
in infinite-dimensional systems that cannot be written this way.
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2 Quantum Systems with Many Particles

2.1 Fock Spaces with Creation and Annihilation Operators

The next topic is how one can model the environment. So far systems interacting with the environment
have been described by preparing the system and the environment in some state, allowing it to evolve
according to the Schrödinger equation and throwing out the environment. Thus, one has to consider
systems with many particles. The precise question to be answered is how one can describe systems
comprised of a possibly indefinite number of particles where indefinite means that particles can be created
and destroyed. Here the environment is simply modeled as a bunch of photons such that the environment
is the electromagnetic field in some thermal state.

To describe the composition of n quantum systems A1, A2, ..., An with observable algebras A1,A2, ...,An
the tensor product A1 ⊗ A2 ⊗ ... ⊗ An is used to describe all possible observables. The corresponding
Hilbert space for the system A1A2...An is HA1A2...An = HA1

⊗ HA2
⊗ ...⊗ HAn where HAj is the Hilbert

space of Aj .

However, this is not sufficient for an indefinite number of particles. To discuss an indefinite number of
particles each with the same single-particle Hilbert space H the Fock space defined as

F(H) ∼=
⊕
n≥0

H(n) (2.1)

is introduced where H(0) = C and H(n) = H ⊗ ... ⊗ H (n times). The Fock space is infinite-dimensional
because n is unbound. Vectors representing states are lists of vectors of the form (|α0〉 , |α1〉 , |α2, ...〉
where |α0〉 ≡ α0 ∈ C, |α1〉 ∈ H, |α2〉 ∈ H ⊗ H, and so on for the other |αj〉 which eventually become 0.
Note that these vectors are not normalized.

Note also that this space is still to big for many practical purposes because this space describes distin-
guishable particles but photons are identical. If there are two identical particles and one swaps them
then this is the same state. One defines the Fock space for identical particles by starting from the Fock
space of distinguishable particles (2.1) and identify all the states that are the same. The projections

P
(n)
± |f1〉 |f2〉 ... |fn〉 =

1

n!

∑
π∈Sn

ε(±)
π |fπ−1(1)〉 |fπ−1(2)〉 ... |fπ−1(n)〉

where Sn is the symmetric group of permutations π of the set {1, ..., n} and ε
(+)
π is always +1 while ε

(−)
π

is +1 or −1 depending on whether the number of transpositions is even or odd. With this the Bose- and
the Fermi-Fock space are

F±(H) ∼=
⊕
n≥0

P
(n)
± H(n) (2.2)

respectively. In the following mainly the Bose-Fock space F+(H) will be used because photons are bosons.
However, also fermions interact with the electromagnetic field.

An example of a single-particle Hilbert space is H ∼= L2(R) for the mode of a standing
wave of light. The Hilbert space for a single photon in a cavity as in the figure on the
right side can also be `2(N) or any vector space with vectors |ψ〉 =

∑∞
n=0 cn |n〉. This

is already an infinite configuration space. With an indefinite number of photons in the cavity there are
even more possible states and F+(H) is big. If only the lowest mode is occupied then states live in a
subspace F+(C) which also has an infinite dimension.

For |f〉 ∈ H the two operators a(|f〉) and a†(|f〉) on F(H) are defined via

H(0) : a(|f〉) |f0〉 = 0 for |f0〉 ∈ H(0) ∼= C

H(1) : a†(|f〉) |f0〉 ≡ ‖|f0〉‖ |f〉
H(n) : a(|f〉)(|f1〉 |f2〉 ... |fn〉) ≡

√
n 〈f |f1〉 |f2〉 ... |fn〉 ∈ H(n−1)

a†(|f〉)(|f1〉 |f2〉 ... |fn〉) ≡
√
n+ 1 |f〉 |f1〉 |f2〉 ... |fn〉 ∈ H(n+1)
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and are the building blocks for the annihilation and creation operators working on distinguishable states,
and the actual annihilation and creation operators are defined as

a±(|f〉) ≡ P± a(|f〉)P±
a†±(|f〉) ≡ P± a†(|f〉)P±

(2.3)

obeying the relations[
a±(|f〉), a±(|g〉)

]
∓ =

[
a†±(|f〉), a†±(|g〉)

]
∓ = 0

[
a±(|f〉), a†±(|g〉)

]
∓ = 〈f | g〉 I (2.4)

where [A,B]∓ = AB ±BA. This is so general that one can talk about fermions and bosons at the same
time.

2.2 Continuous Quantum Variables

The Hilbert space H = C is useful to describe a single mode of light in a cavity as the simplest bosonic
quantum system. The Fock space is

F+(C) ≡
⊕
n≥0

P
(n)
+ H(n) ≡

⊕
n≥0

C ∼= `2(N)

according to (2.2) with P
(n)
+ = 1 where H(n) is one-dimensional because H(n) = C ⊗ ... ⊗ C ≡ C. Using

|n〉 as the basis vector for the nth subspace P
(n)
+ H(n) an arbitrary state |ψ〉 ∈ F+(C) has the form

|ψ〉 =
∑
n≥0

cn |n〉 such that
∑
n≥0

|cn|2 < 0

and this is the state of a single harmonic oscillator. An infinite-dimensional quantum system with Fock
space F+(C) is called a continuous quantum variable.

A qubit has two levels. A pure state can be specified as two complex numbers and a mixed state needs
three real numbers which is basically the same as two complex numbers up to a normalization. Thus,
one never has to worry about how to represent the state of qubits. If one has a harmonic oscillator, one
has to specify its state somehow. One way is to write down the whole list of complex numbers but, as
this is not possible for an infinite list, one can either use a finite list and ignore the rest or one can try to
find an algorithm n→ cn for the complete list.

A continuous quantum variable is a quantum system with a Hilbert space H ∼= F+(C). There is only one
annihilation operator and one creation operator (2.3) with simple commutation relations (2.4)

a ≡ a(|1〉) a† ≡ a†(|1〉) [a, a] = [a†, a†] = 0 [a, a†] = I (2.5)

since the Hilbert space has only one state. With

|n〉 ≡ 1√
n!

(
a†
)n |0〉 a†a |n〉 = n |n〉

a |n〉 =
√
n |n− 1〉 a† |n〉 =

√
n+ 1 |n+ 1〉 〈n |m〉 = δn,m ∀n,m ∈ N

(2.6)

where n is the number operator the harmonic oscillator is completely described.

The displacement operator also called Weyl operator is defined as

D(a, α) ≡ eαa
†−α∗a (2.7)

for α ∈ C. The mathematical reason for defining the displacement operator is that a and a† are unbounded
operators and it is not clear whether they are continuous and whether expressions with them converge.
By exponentiating them they become unitary operators which obviously are bounded. One can do all
calculations with them and differentiate with respect to α when needing expressions with a and a†. There
is also a physical reason because these displacement operators correspond to linear optics transformations
such as phase shifters and beam splitters. They closely correspond to what one does in experiments.
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These displacement operators are unitary operators, and D−1(a, α) = D(a,−α) = D†(a, α) is a kind of
proof. They can be written in the form

D(a, α) = e−
|α|2
2 eαa

†
eα
∗a

as can be shown using the Baker-Campbell-Hausdorff formula. Because there is only one mode of light,
the displacement operators will be written simply as D(α) ≡ D(a, α) in the following, and the identities

(i) D†(α)D(α) = a+ α

(ii) D(α)D(β) = e(αβ∗−α∗β)/2D(α+ β)
(2.8)

are useful.

With D(α) one can build states. The state

|α〉 = D(α) |0〉 = e−
|α|2
2

∞∑
n=0

αn√
n!
|n〉 (2.9)

for α ∈ C is called a coherent state. These are the ones that get prepared in experiments involving linear
optics. One can prove that a Fock state except for 0 is not a coherent state. The coherent states have
mathematical properties. One is that they are overcomplete such that

〈n |
(∫

d2α |α〉 〈α|
)
|m〉 = πδn,m

where
∫
d2α =

∫
(dRe(α))(d Im(α)). They have

I =
1

π

∫
d2α |α〉 〈α| (2.10)

as the completeness relation. Because of this completeness relations an arbitrary state |ψ〉 ∈ F+(C) can
be expressed as a linear combination of coherent states as long as one can compute the inner product
f(α) = 〈α|ψ〉 between this state and an arbitrary coherent state. This gives

I |ψ〉 =
1

π

∫
d2α (〈α|ψ〉) |α〉 =

1

π

∫
d2α (f(α)) |α〉 (2.11)

and knowing f(α) is the same as knowing |ψ〉. Coherent states are overcomplete meaning that there is
more than one way for representing arbitrary states, and this creates problems.

The figure on the right side shows an overcomplete basis {e1, e2, e3} of R2. There is an infinite
number of ways to specify point P in R2 because it can be specified as a linear combination of
any two vectors e1, e2, e3 but also of any two linear independent linear combinations of them.
This leads to a redundant specification of any point.

Similarly here, states are represented redundantly, and more than one function f will give the same state.
This is a blessing and a curse. It is a blessing because one might find a nice function f instead of an ugly
one, and it is a curse because one might have to show that two integrals f(α) |α〉 and g(α) |α〉 are equal.

So far, pure states have been used but mixed states are needed for systems that are in contact with the
environment and hence exchange information with the environment. This is more difficult for infinite-
dimensional systems than for finite-dimensional systems because one has to deal with an infinite list
of numbers, and formula (2.11) has to be generalized to mixed states. Since mixed states are usually
represented as density operators, the goal is to represent operators on an infinite-dimensional space. This
leads to infinite-dimensional matrices, and the displacement operators help to do that.

The orthogonality and completeness of the displacement operators needs to be proven. However, as
the coherent states are overcomplete also the displacement operators are overcomplete. In a first step
tr(D(α)) is calculated although this is not something one can observe in an experiment. This gives

tr
(
D(α)

)
=

1

π

∫
d2β tr

(
|β〉 〈β|D(α)

)
=

1

π

∫
d2β 〈0 |e(α+β)†α−(α+β)α∗ | 0〉

=
e−|α|

2/2

π

∫
d2β e−βα

∗+β∗α = π δ2(α)
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after inserting the identity from the completeness relation (2.10). Hence

tr
(
D†(β)D(α)

)
= π δ2(β − α) (2.12)

follows. One can look at this as analogous to the inner product (D(β), D(α)) but of operators and not
of vectors. Since mixed states are represented as density operators and density operators are bounded
operators the really important result comes next. Under the assumption that A is a bounded operator
on the Hilbert space H then

A =
1

π

∫
d2α tr

(
AD†(α)

)
D(α) =

1

π

∫
d2αχ(α)D(α) (2.13)

and this result could be called the operator overcompleteness relation looking similar to (2.11). Any
operator can be expressed as a linear combination of displacement operators but it is not a unique linear
combination because of the overcompleteness. One can turn the relation in (2.13) around and ask what
is the operator given some χ(α).

The proof for (2.13) works as

〈n |A |m〉 ?
=

1

π

∫
d2α

∑
`

〈` |AD†(α) | `〉 〈n |D(α) |m〉

?
=

1

π

∫
d2α

∑
`,k

〈` |A |k〉 〈k |D†(α) | `〉 〈n |D(α) |m〉

1

π

∫
d2α 〈k |D†(α) | `〉 〈n |D(α) |m〉 suppose

= δk,mδ`,n

⇒ 1

π

∫
d2α

∑
`,k

〈` |A |k〉 〈k |D†(α) | `〉 〈n |D(α) |m〉 =
∑
`,k

〈` |A | k〉 δk,mδ`,n = 〈n |A |m〉

where 1
π

∫
d2α 〈k |D†(α) | `〉 〈n |D(α) |m〉 = δk,mδ`,n follows from

tr(A)I =
1

π

∫
d2αD(α)AD†(α)

which can be proved using

1

π

∫
d2α 〈µ |D(α) |β〉 〈γ |D†(α) | ν〉 = 〈γ |β〉 〈µ | ν〉

where |µ〉, |ν〉, |β〉, |γ〉 are coherent states.

All states are represented by density operators ρ such that ρ ≥ 0 and tr(ρ) = 1 in finite dimensions but
not all states have this form in infinite dimensions. However, states interesting for physics are in this
form. One calls χ(α) with

χρ(α) = tr
(
ρD(α)

)
(2.14)

the characteristic function of ρ. This is interesting because one can estimate χρ(α) by experiments, and
if one knows χρ(α) one can reconstruct ρ from χ(α) as

ρ =
1

π

∫
d2αχ∗(α)D(α)

because of A = 1
π

∫
d2α tr

(
AD†(α)

)
D(α) from the completeness relation (2.13). The fact that ρ is a

hermitian operator places some constraints on the shape of the characteristic function.

This described how one represents single modes of continuous variables. For multiple modes the Hilbert
space is defined as Hn = H⊗H⊗ ...⊗H (n times) for N distinguishable continuous quantum variables. (If
the continuous quantum variables are indistinguishable one has to compensate for the symmetry.) The
displacement operators have n complex numbers with α ∈ Cn and are defined as

D(α) ≡ D(α1)⊗D(α2)⊗ ...⊗D(αn) =

n⊗
j=1

D(αj)

= e
∑n
j=1 αja

†
j−α

∗
jaj

(2.15)
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where a†j and aj are the creation and annihilation operators of these modes with the commutation relations

[aj , a
†
k] = δjkI. Given the coherent states |α〉 = D(α) |0〉 ⊗ ...⊗ |0〉 completeness is

I⊗ I⊗ ...⊗ I =
1

πn

∫
d2α1d

2α2...d
2αn |α1〉 〈α1| ⊗ |α2〉 〈α2| ⊗ ...⊗ |αn〉 〈αn|

for the multiple modes.

2.3 Gaussian States

Gaussian states are states of continuous quantum variables and are defined by a very special mathematical
property. Their physical property is that they show up in experiments all the time. They are a good
model for the kinds of quantum states one encounters in a linear optical apparatus, for example. The
Hilbert space for n continuous quantum variables is H ≡ F+(C) ⊗ ... ⊗ F+(C) (n times) for bosons and
this is also F+(Cn).

However, there are different conventions how one specifies displacement operators in quantum optics,
and a very common one used in the literature has to be presented before continuing. For α ∈ Cn the
displacement operators have been introduced as

D(α) = eα1a
†
1−α

∗
1a1 ⊗ ...⊗ eαna

†
n−α

∗
nan

above. It is also convenient to define canonical operators with their commutation relations

q̂j ≡
a†j + aj√

2
p̂j ≡

i(a†j − aj)√
2

[q̂j , p̂k] = iδjk

analogous to position and momentum operator. Thus, one can write everything with q̂j and p̂j instead

of aj and a†j . Since Gaussian states are usually expressed in this notation, it will be used in the following
as well.

With ξ ∼= (x1, ..., xn; p1, ..., pn) ∈ R2n the displacement operators become

D(ξ) = ei ξ p
Tσ R̂ = ei

∑n
j=1 pj q̂j−xj p̂j σ =

(
0 −I
I 0

)
R̂ ≡ (q̂1, q̂2, ..., q̂n; p̂1, p̂2, ..., p̂n) (2.16)

where pj is a number and p̂j an operator. This is completely equivalent to (2.15) such that D(α) ≡ D(ξ)
if one sets

αj =
xj + i pj√

2

for the coefficients. One can express the characteristic function as

χρ(ξ) = tr
(
ρD(ξ)

)
in terms of ξ. In the notation with α the characteristic function χρ(α) = tr(ρD(α)) is a function of n
complex numbers, and in this other notation the characteristic function χρ(ξ) is a function of 2n real
numbers.

A Gaussian state ρ is a state whose characteristic function is a Gaussian such that

χρ(ξ) ≡ e
−imTσ ξ− 1

4 (σ ξ)T γ (σ ξ)
(2.17)

where m is the vector of first moments called displacement vector defined as

[m]j = tr
(
ρ R̂j

)
and γ is the matrix of second moments

[γ]jk = 2 tr
(
ρ
[
R̂j −mj

][
R̂k −mk

])
+ i[σ]jk = tr

(
ρ
(
R̂jR̂k + R̂kR̂j

))
− 2mjmk (2.18)
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called covariance matrix. For Gaussians in probability theory first and second moments determine all the
higher moments.

At this point it is not clear whether states satisfying (2.17) exist, and whether all characteristic functions
defined by this equation are really states. Thus, this is just a definition but one has to prove first that it
is a good definition. If this is a good definition and states are defined by this characteristic function then
the state of an infinite-dimensional Hilbert space is defined in terms of some 4n2 + 2n numbers because
one needs only the vector of first moments m and the matrix of second moments γ.

As a first example of a Gaussian state the density operator and the characteristic function are

ρ =

n⊗
j=1

|0〉 〈0| χ(ξ) = e−
1
4 ξ
T ξ = e−

1
4 (σ ξ)T (σ ξ)

for the vacuum state using σTσ = I. This is a minimum uncertainty state such that (∆qj)(∆pj) = 1
2 ,

and the first moments are m = 0 and γ = I.

The vacuum state is a coherent state and it turns out that all the coherent states are Gaussian. They
form an overcomplete basis for the Hilbert space but the linear combination of two Gaussian states is not
necessarily a Gaussian state. (It actually often is not.) Density operator and characteristic function for
a coherent state are

ρ = |α〉 〈α| ≡ D(α) |0〉 〈0|DT (α) χ(ξ) = e−i(a1,a2,...,an;b1,b2,...,bn)σ ξ− 1
4 ξ
T ξ

where αj = (aj + i bj)/
√

2. There is a shift such that the vector of first moments is not zero, and the
matrix of second moments is still the identity as in the case of the vacuum.

Not all possible matrices can serve as a covariance matrix because γ must satisfy the conditions

γ − i σ ≥ 0 γT = γ (2.19)

and, if it fulfills these conditions, it corresponds to a state. To prove it

z†(γ − i σ)z = 2 tr

(
ρ
∑
jk

z∗j
(
R̂j −mj

)(
R̂k −mk

)
zk

)
= tr

(
ρA†A

)
using tr

(
ρA†A

)
≥ 0 for all A and (2.18) where z ∈ C2n and A =

∑
(R̂j −mj)zj . This proves that given

a state ρ whose characteristic function is a Gaussian then the covariance matrix must satisfy (2.19) but
one also has to show that a state corresponding to a covariance matrix satisfying (2.19) is a Gaussian
state. A flavor of the argument for the statement that every covariance matrix corresponds to a valid
quantum state is based on the idea to fix the first and second moments and to build the set of all states
matching them. The state in this set with the largest entropy is the Gaussian state. The result is that

there exists a system of coupled harmonic oscillators whose thermal state ρ = e−β Ĥ/Z has (2.17) as its
characteristic function for given m and γ satisfying γ − i σ ≥ 0.

Actually, as a more general statement, thermal states e−β Ĥ/Z of quadratic Hamiltonians

Ĥ =
∑
jk

R̂j hjk R̂k

are always Gaussian. The exact formula for hjk given the displacement vector and the covariance matrix
is not so intuitive.

2.4 Bipartite Gaussian States

So far general Gaussian states have been studied. In the following the focus will be on bipartite Gaussian
states which one can therefore put into two groups. There are two parties assumed which will be called
Alice and Bob as usual. Both have n modes such that they have together 2n modes. The modes of Alice
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are numbered 1, ..., n and the modes of Bob are numbered 1′, ..., n′. Gaussian states of the combined
system will be examined, and the question is what joint states can they share. A trivial observation is
that Alice and Bob can certainly share a Gaussian state on Alice’s modes and a Gaussian state of Bob’s
modes. It will turn out that not only separable or product states are allowed but one can also express
some interesting entangled states in terms of Gaussian states, and the general question is what kind of
joint states ρAB are Gaussian.

The reduced state of a Gaussian state is also Gaussian. If ρAB is Gaussian then also

ρA ≡ trB(ρAB)

is Gaussian. The proof is straightforward as the characteristic function of the reduced state of Alice is

χA(ξ) = trA

(
ρADA(ξ)

)
= trAB

(
ρABDAB(ξ

A
, 0B)

)
= trAB

(
ρABDA(ξ

A
)⊗ IB

)
= e
−imTσ (ξ

A
,0B)− 1

4 (σ (ξ
A
,0B))T γ

AB
(σ (ξ

A
,0B))

because of D(ξ
A
, 0B) = D(ξ

A
) ⊗ IB. One just puts in zeros for Bob’s modes. Hence χA(ξ) has first

moments given by the first moments of (q̂1, q̂2, ..., q̂n; p̂1, p̂2, ..., p̂n) in Alice’s system (ignoring first mo-
ments (q̂1′ , ..., q̂n′ ; p̂1′ , ..., p̂n′) of Bob’s system), and the covariance matrix for Alice is found by restricting
the covariance matrix of the combined system to the submatrix with respect to the index set of modes
{1, ..., n} of Alice.

To illustrate this the two-mode squeezed state is used as an example. Assuming
there are two modes A and B with R̂ = (q̂A, q̂B; p̂A, p̂B) then ρ = |ψr〉 〈ψr| is
called a two-mode squeezed state illustrated in the figure on the right side if

γ
AB

=


cosh(2r) sinh(2r) 0 0
sinh(2r) cosh(2r) 0 0

0 0 cosh(2r) − sinh(2r)
0 0 − sinh(2r) cosh(2r)


is the covariance matrix. This corresponds to the pure state

|ψr〉 =

√
1−

(
tanh

(r
2

))2 ∞∑
n=1

(
tanh

(r
2

))n
|n〉A |n〉B

where |n〉A and |n〉B are Fock states. (Here r is called the squeezing parameter or tanh
(
r
2

)
depending on

the terminology.) This looks like a maximally entangled state. The reduced density operator for A has
the covariance matrix (

cosh(2r) 0
0 cosh(2r)

)
by restricting γ

AB
.

This shows how to find the covariance matrix of a subsystem by restricting the covariance matrix of a
gaussian state. The other question is whether a Gaussian state always comes from a bigger Gaussian
state, and the answer is yes for the bipartite case but not always for the tripartite case. Extending a
Gaussian state means to find a Gaussian state ρAB given the Gaussian state ρA such that ρA = trB(ρAB)
if it exists. In other words, the question is whether one can infer that a smaller system comes from a
Gaussian state of a bigger system. The answer is trivial because there is always ρAB = ρA⊗ ρB where ρB

is any Gaussian state. The question becomes much richer when putting constraints on how to extend the
system. One can ask, for example, whether there are extensions such that the extended Gaussian state
is pure. There is an infinite number of extensions, and this is called purification.

The question becomes much richer with three modes A, B, C with Gaussian modes AB and BC. One
might assume that there is always a Gaussian state ρABC given Gaussian states ρAB and ρBC but this
is not always the case. It actually can happen that there is no ρABC at all such that trC(ρABC) = ρAB

and trA(ρABC) = ρBC. That comes from the fact that there can be entangled states. Thus, the task of
extending states is not easy but the state of reducing states is easy.
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2.5 Quasi-Free Boson Systems

The goal is to understand the dynamics of a system A embedded in an environment E. One can un-
derstand the dynamics of A by integrating the Schrödinger equation for the whole system but this is a
inconceivably difficult problem because the environment is enormous and it very quickly happens as time
passes that A will become correlated and entangled with E. The task becomes harder and harder as time
progresses. Thus, the goal is to understand the dynamics of A while ignoring or neglecting E. There
is the possibility of doing this within the framework of quantum mechanics but one has to employ the
technology of completely positive maps because if one looks only at A ignoring E then A will become
noisy. The noise will come in from every degree of freedom of E that interacts with A.

The reason for studying continuous quantum variables up to now is that system A could be comprised
of some continuous quantum variables but the environment E is pretty much for sure comprised of
continuous quantum variable such as the environment coming from the electromagnetic field. Thus,
before the environment can be ignored or neglected one should know it. This means that the environment
E has to be modeled, and E here is mostly the electromagnetic field. Once E at time t = 0 is understood
its interactions with A will be approximated and then E can be thrown away. This approach leads to
the Lindblad equation.

A Gaussian model is also called quasi-free. A collection L = {1, ..., n} of n modes with q̂j , p̂j for j = 1, ..., n
obeying the canonical commutation relations [q̂j , p̂k] = i δjk I and a system with Hamiltonian

Ĥ =
1

2

n∑
j,k=1

(
q̂j [V

q
]jk q̂k + p̂j [V

p
]jk p̂k

)
(2.20)

is assumed where the potential energy is the term with q̂, and the kinetic energy is the term with p̂.
(Note that n does not have to be a small number but can be 1023 or larger and that Ĥ is not the most
general quadratic Hamiltonian.) The model with this Hamiltonian is capable of describing physics of
non-relativistic and relativistic collections of harmonic oscillators interacting in an arbitrary way. It is
pretty general in the sense that it captures everything from the Klein-Gordon equation through to phonon
propagation in solids.

The Hamiltonian (2.20) is written in the form

Ĥ =
1

2
R̂
T
H R̂ R̂

T
= (q̂1, ..., q̂n, p̂1, ..., p̂n) H =

(
V
q

0

0 V
p

)
(2.21)

in order to gain a concise notation, and it may also be expressed in terms of annihilation and creation
operators as

Ĥ =
1

2
b̂
†
H ′ b̂ b̂ = (b̂1, ..., b̂n, b̂

†
1, ..., b̂

†
n) H ′ =

(
B A
A B

)
A =

V
q

+ V
p

2
B =

V
q
− V

p

2
b̂j =

q̂j + i p̂j√
2

where Ĥ not only couples b̂†j and b̂k as well as b̂j and b̂†k but also b̂j and b̂k as well as b̂†j and b̂†k. The first

two types of terms with b̂†j and b̂k as well as b̂j and b̂†k conserve total particle number but the other types

b̂j and b̂k as well as b̂†j and b̂†k do not and generate squeezing between the modes.

The model (2.20) is diagonalized by a transformation preserving the canonical commutation relations.
(The trick is not do diagonalize Ĥ as a matrix and to make the transformation on the states but to make
the transformation on the operators.) One defines R̂′j such that they obey

[R̂′j , R̂
′
k] = −i [σ]jk I σ =

(
0 −I
I 0

)
(2.22)

and one looks for a transformation from the original R̂ to the new R̂
′

which still obey these canonical
commutation relations. The hope is that this transformation will turn out to be unitary.
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Starting from a general linear function with a matrix S ∈ M2n(R)

R̂′j =
∑
k

[S]jk R̂k

one has to figure out what constraints have to be imposed on it due to (2.22). Substituting this into the
commutation relations gives

[R̂′j , R̂
′
k] =

∑
j′,k′

[S]jj′ [S]kk′ [R̂
′
j′ , R̂

′
k′ ] = −i

∑
j′,k′

[S]jj′ [σ]j′k′ [S]kk′ I = −i[σ]jk I ⇒ S σ ST = σ (2.23)

and matrices S satisfying this equation are called symplectic transformations.

The Lie group called symplectic group is certainly not empty because the identity belongs to it. The set
of matrices {S ∈ M2n(R) |S σ ST = σ} is denoted by Sp(2n,R). The theorem of Williamson states that
one can use symplectic matrices to bring other matrices into normal form. It formally states that given
M ∈ M2n(R) with MT = M and M > 0 there exists S ∈ Sp(2n,R) and D = diag(µ1, µ2, ..., µn) ∈ Mn(R)

with µj > 0 such that M = ST (D ⊗D)S where µj are called the symplectic eigenvalues determined as

µj =
√
λj(i σM)2

by diagonalizing σM . The value λj(X) is the jth eigenvalue of X when listed in descending order.

One can find S which diagonalizes M as

S =

 1√
D

0

0 1√
D

O
√
M

where O must satisfy  1√
D

0

0 1√
D

O
√
M σ

√
MOT

 1√
D

0

0 1√
D

 = σ

because of (2.23). Multiplying with the inverse of the term with D on both sides gives

O
√
M σ

√
M OT =

(
0 −D
D 0

)
(2.24)

as an equivalent condition which O must satisfy. This condition is in general a hard problem but the full
general case is not needed here.

For M = H in (2.21) one can find O satisfying (2.24) by choosing Q such that

QT
√
V
q
V
p

√
V
q
Q = D2

and build

O =

QT 0

0 DQT 1√
V
q

1√
V
p


which can be solved at least by a computer. The matrix

√
V
q
V
p

√
V
q

is symmetric, Q is orthogonal,

and one can compute O and S. One can show that

S =

 1√
D

0

0 1√
D

O

√V q 0

0
√
V
p

 (2.25)
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satisfies (
V
q

0

0 V
p

)
= ST

(
D 0
0 D

)
S (2.26)

and the linear function S in (2.23) has been found.

Defining R̂′j =
∑
k[S]jk R̂k one can diagonalize Ĥ in (2.20)

Ĥ =
1

2
(R̂
′
)T
(
D 0
0 D

)
R̂′ =

n∑
j=1

µj

(
â†j âj +

1

2

)
âj =

q̂j + i p̂j√
2

(2.27)

showing that there is a transformation to a collection of independent harmonic oscillators. This justifies
the name quasi-free because the initial complicated quadratic model is not a sum of independent harmonic
oscillators but it is a unitary transformation away from it.

One can now go back and express the original model in terms of creation and annihilation operators. The
question is how to do that. The characteristic function of a general ρ behaves under the transformation
R̂′j =

∑
k[S]jk R̂k as

χρ(ξ) = tr
(
ρ ei ξ

Tσ R̂
)

= tr
(
ρ ei ξ

Tσ[S]−1R̂
′)

= tr
(
ρ ei (S ξ)Tσ R̂

′)
= χ′ρ(S ξ)

and hence the result for the inverse transformation is

m = S−1m′ γ = S−1 γ′(S−1)T (2.28)

for the first and second moments, respectively. Thus, this linear transformation can be undone.

The thermal state of the model with the Hamiltonian Ĥ in (2.20)

ρ =
e−β Ĥ

tr
(
e−β Ĥ

) (2.29)

is Gaussian. The statement (2.27) above is actually more powerful than the statement (2.29) because it not
only tells what the ground state is but also all the excited states. In practice however the statement (2.29)
is used because the environments one encounters are fields in thermal states. One assumes that the system
has been cooled down and is isolated from the environment but as time progresses it slowly interacts with
the environment, and this environment can be assumed in some thermal equilibrium. Because the thermal
state (2.29) is Gaussian one knows everything about the system when knowing m and γ.

To show that ρ is Gaussian one transforms it

ρ =

n⊗
j=1

e−β(µj a
†
jaj+

1
2 )

Zj
= det

(
1− e−βD

)
·
∑

m1,...,mn

e−β µjmj |m1, ...,mn〉 〈m1, ...,mn|

where Zj = tr
(
e−β(µj a

†
jaj+

1
2 )
)
. Since the characteristic function for a tensor product is a product of the

characteristic functions. Thus, it is enough to understand a single mode. The characteristic function is
proportional as in

χ′ρ(ξ) ∝ e
− 1

4 ξ
T

γ̄ 0

0 γ̄

ξ
with γ̄ = 4 diag

(
eβ µj + 1

eβ µj − 1

)
but this calculation is rather tricky. Finally, one gets

γ(β) = S−1

(
γ̄ 0

0 γ̄

)
(S−1)T =

(
γ
q
(β) 0

0 γ
p
(β)

)
(2.30)
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with

γ
q
(β) =

1√
V
q

(√
V
q
V
p

√
V
q

) 1
2 (

I +G
) 1√

V
q

γ
p
(β) =

√
V
q

(√
V
q
V
p

√
V
q

)− 1
2 (

I +G
)√

V
q

G = 2

(
e
β

(√
V
q
V
p

√
V
q

)
− I

)−1

(2.31)

where γ̄(β) is the covariance matrix in the thermal state with inverse temperature β in the original

variables. In practice many of the matrices V are much simpler, and V
p

is almost always the identity

matrix. In the end one can actually work out every single entry of γ(β) both non-relativistically and

relativistically.

2.6 The Master Equation

The dynamics of a system S interacting with an environment E is described as

ES(ρS) = trE

(
USE

(
ρS(0)⊗ ρE(0)

)
U†SE

)
(2.32)

in complete generality. The dynamics ES(ρS) is described by a completely positive map where the unitary
dynamics USE couples the system and the environment and ρS(0) and ρE(0) are the initial states of the
system and the environment, respectively.

There are several assumptions in this equation. One is that system and environment at time t = 0
are decoupled such that ρSE(0) = ρS(0) ⊗ ρE(0) but that system and environment interact some time
later. Three justifications for this assumption are that the system could have been insulated from the
environment by design at time t = 0, that system and environment are only weakly coupled, or that system
and environment are decoupled but one wants to turn on a coupling. (If one relaxes this assumption then
things become much more complicated.)

Equation (2.32) also has some defects. One is that the unitary operator USE between the system and the
environment is presumably a gigantic matrix that couples the degrees of freedom of the system and the
possibly infinite degrees of freedom of the environment. One would have to describe the full dynamics of
the system and the environment if one wants to describe the dynamics of the system. This is not only
practically difficult to do but also physically undesirable because it should not be necessary to know the
position of every mode in the environment if one has only access to the system and knows just a few
things about the system.

The Hilbert space for the system and the environment is HS⊗HE where HS is often assumed to be finite-
dimensional and usually HE is taken to be an infinite number of harmonic oscillators. This describes the
kinematics. For the dynamics describing how the system and the environment evolve according to the
Schrödinger equation the Hamiltonian is a sum of the three terms Htot = HS +HE + V for the system,
for the environment and for the interactions between them where HS +HE = H0 represents the free part.
Further as initial conditions, the environment (reservoir) is in thermal equilibrium at temperature T

ρE(0) =
e
− HE
kBT

tr

(
e
− HE
kBT

) ≡ e−β HE

tr (e−β HE)
(2.33)

at time 0. The total state of system and environment at time t with its time evolution according to the
Schrödinger equation become

ρtot(t) = e−iHtot t
(
ρS(0)⊗ ρE(0)

)
eiHtot t

d

dt
ρtot(t) = −i

[
H0 + V, ρtot(t)

]
(2.34)

and the state of the system alone is ρS(t) = trE(ρtot(t)) using equation (2.32).
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The next assumption is that the dynamics of H0 = HS + HE is solvable, and this means that HE is a
quasi-free Hamiltonian. One moves to the rotating frame of the interaction picture and defines

Vint(t) = e−iH0 t V eiH0 t ρint,tot(t) = eiH0 t ρtot(t) e
−iH0 t

with the goal to make the remaining dynamics a bit easier to describe. The Schrödinger equation

d

dt
ρint,tot(t) = i

(
e−iH0 t [H0, ρtot(t)] e

iH0 t
)
− i
(
e−iH0 t [H0 + V, ρtot(t)] e

iH0 t
)

= −i [Vint(t), ρint,tot(t)] (2.35)

shows the dynamics in the rotating frame where the expression “rotating frame” means that unitary
operations ±e−iH0 t look like a kind of rotation.

The equation (2.35) can be solved

ρtot(t) =

∫ t

0

d

ds
ρtot(s) ds+ ρtot(0) = −i

∫ t

0

d

ds

[
V (s), ρtot(s)

]
+ ρtot(0)

where the subscripts “int” have been dropped. Substituting this into (2.35) gives a Dyson series (a
fixed-point iteration) where

d

dt
ρtot(t) = −i

[
V (t), ρtot(0)

]
−
∫ t

0

dt1

[
V (t),

[
V (t1), ρtot(t1)

]]
is the result after the first iteration. The reason to stop after one iteration is that V (t) is assumed to
be a small perturbation and the first non-trivial effects come at second order. One can get rid of the
environment in the following by starting with

d

dt
ρS(t) = −i trE

([
V (t), ρtot(0)

])
−
∫ t

0

dt1 trE

([
V (t),

[
V (t1), ρtot(t1)

]])
and using ρtot(0) = ρS(0)⊗ ρE(0) after splitting V (t)

V (t) = VS(t) + VSE(t) VS = VS ⊗ IE trE

(
VSE(t) ρtot(0)

)
= 0

into a system piece and a system-environment piece as one can do by redefining H0.

Using the further assumption that V is weak stated as V = λHI for a small λ valid for the electromagnetic
field interaction and the assumption (called the Born approximation) that sets ρtot(t1) = ρS(t1)⊗ ρE(t1)
the next steps can be computed. However, the Born approximation completely demolishes the entan-
glement between the system and the environment and is a terrible assumption because the system and
the environment initially in a product state start interacting. As time passes electrons emit photons
that are getting entangled and the entanglement between system and environment gets stronger and
stronger. The system looks more and more getting mixed such that no definite state can be assigned to
the system. However, the Born approximation implies that there is no entanglement between system and
environment.

Thus, the Born approximation looks like a stupid assumption given what one knows about the physics of
the situation. If one asks questions about the environment as well as the system this is a bad assumption.
However, one is never going to interrogate the environment, and the only degrees of freedom accessible
are the ones of the system. Thus, one can never see the entanglement between the system and the
environment. On the other hand, something like the Born approximation is necessary because one has
to get rid of the environment and if the environment can talk back this would also be a problem.

Applying these assumptions give

d

dt
ρS(t) = −i

[
VS(t), ρS(0)

]
−
∫ t

0

dt1 trE

([
VSE(t),

[
VSE(t1), ρS(t1)⊗ ρE(t1)

]])
(2.36)

and this is non-local in time making it quite difficult to solve. However, this is the starting point for
many other calculations while here further assumptions are made.
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It is assumed that the physics of the bath is such that the system couples roughly equally to many
closely spaced energy levels of the bath. If one draws the spectrum of the bath there are many closely
spaced energy eigenvalues in any interval ∆E. This is a reasonable assumption which models most of the
baths one encounters. The electromagnetic field, for example, consists of an infinite number of harmonic
oscillators each with a slightly different energy. The spectrum is actually continuous. The state ρS(t)
also should only depend on ρS(t′) for t′ near t. Thus, the equation (2.36) becomes

d

dt
ρS(t) = −i

[
VS(t), ρS(0)

]
−
∫ t

0

dt1 trE

([
VSE(t),

[
VSE(t1), ρS(t)⊗ ρE(0)

]])
(2.37)

and is called the Redfield equation.

The last assumption is called the Markov approximation and assumes the bath to be memoryless. It
replaces the lower limit of the integral by −∞ such that

d

dt
ρS(t) = −i

[
VS(t), ρS(0)

]
−
∫ t

−∞
dt1 trE

([
VSE(t),

[
VSE(t1), ρS(t)⊗ ρE(0)

]])
(2.38)

and this is called the Born-Markov master equation. It requires HE to have a continuous spectrum in
the relevant energy ranges.

2.7 Example of the Radiative Decay of a Two-Level Atom

The following example shows a two-level atom that interacts with the electromagnetic field which is in
its vacuum. When there is an excited atom one puts into an electromagnetic field in a vacuum then the
atom decays after some time. Because all solutions of the Schrödinger equation are unitary operators,
this situation is puzzling. The system is closed and undergoes unitary evolution but the atom always
decays and never becomes reexcited. This is surprising because on one hand one has unitary dynamics
for the whole system but on the other hand there is irreversible dynamics. The atom decays and goes to
its ground state and the reverse process almost never occurs. Looking at the degrees of freedom this is
no longer very surprising because there are two levels for the atom and an infinite number of levels for
the environment. In the sense of statistical mechanics there are many more ways for the excitation to
float into the environment than there are ways for the flow from the environment back to the atom.

The master equation can be applied to the radiative damping. Wigner and Weisskopf following Bohr and
Einstein explained how radiative decay of an atom from an excited state could be explained in quantum
mechanics. The environment is modeled as a free field with

HE =
∑
k

ωk b̂
†
k b̂k

according to quantum field theory because the free field can be written as a collection of harmonic
oscillators where ωk is the energy of the kth mode and b̂†k and b̂k are the bosonic creation and annihilation

operators satisfying
[
b̂k, b̂

†
`

]
= δk`. The system is the simplest quantum mechanical system namely a

two-level atom representing a qubit with

HS = ωa
σ2

2

stating basically that the ground state has energy zero and the excited state has an energy above zero.
The interaction is a cartoon of dipole coupling

V =
∑
k

(
gk b̂k + gk b̂

†
k

)(
σ+ + σ−

)
where σ+ = |0〉 〈1| and σ− = |1〉 〈0|. The coupling constants gk are proportional to the dipole matrix
element for the transition. They depend on the structure of mode k

gk ∼
1√
Vk
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where Vk is the volume of mode k although the derivation works for fairly general sets of gk. Therefore,
V in the interaction picture becomes

Vint(t) =
∑
k

(
gk b̂k e

−i ωk t + gk b̂
†
k e

i ωk t
)(
σ+ ei ωa t + σ− e−i ωa t

)
with some phases on top of the original V with ωa ∼ 1015 s−1.

Two of the four terms of Vint are ignored in the approximation

Vint(t) ≈
∑
k

(
gk b̂k σ

+ e−i (ωk−ωa) t + gk b̂
†
k σ
− ei (ωk−ωa) t

)
(2.39)

because the terms with ωk + ωa represent very fast frequencies relative to ωk − ωa and fast frequencies
tend to self-average out. This is called the rotating wave approximation. Now the initial state is chosen
as the vacuum state ρE(0) = |Ω〉 〈Ω| such that ρSE(0) = ρS(0) ⊗ |ΩE〉 〈ΩE|. Thus, there are no photons

in the field, and the terms with b̂k applied to the vacuum cancel as b̂k |ΩE〉 = 0 for all k. The interaction

of the system with the environment is weak, but gk b̂
†
k eventually creates a degree of freedom in the

environment and as time progresses this degree of freedom might act back on the atom. However, this
is one of the assumptions that the bath is so designed that these excitations fly away and never interact
with the atom. If the atom is in the excited state |1〉 at the bottom of the Bloch sphere then there is an
amplitude for a process such that |1〉 gets mapped down to |0〉 and a photon is created and flies away.
Once the atom is in state |0〉 it stays there forever because there is no process to take it back.

In order to derive the equations of motion one starts from the rotating wave approximation for Vint(t)
in (2.39). One splits this equation into

V +(t) =
∑
k

(
gk b̂k σ

+ e−i (ωk−ωa) t
)

V −(t) =
∑
k

(
gk b̂
†
k σ
− ei (ωk−ωa) t

)
and inserts it into the Born approximation

d

dt
ρS(t) = −

∫ t

0

dt1 trE

([
Vint(t),

[
Vint(t1), ρS(t1)⊗ |ΩE〉 〈ΩE|

]])
where the split of Vint(t) = V +(t)+V −(t) gives four possible combinations as a complication but some of
these terms vanish when acting on the vacuum as a simplification. Also the expansion of the commutator
gives additional terms, and together this gives sixteen terms leading to sixteen similar calculations

d

dt
ρS(t) = −

∫ t

0

dt1 (IS ⊗ 〈ΩE|)
(
V +(t)V +(t1) (ρS(t1)⊗ IE) + V +(t)V −(t1) (ρS(t1)⊗ IE) +

V −(t)V +(t1) (ρS(t1)⊗ IE) + V −(t)V −(t1) (ρS(t1)⊗ IE) + ...−

V +(t1) (ρS(t1)⊗ IE)V +(t) + ...

)
(IS ⊗ |ΩE〉)

using the identity trE(W (ρS ⊗ |ΩE〉 〈ΩE|)) ≡ (I ⊗ 〈ΩE|)W (ρS ⊗ I) (I ⊗ |ΩE〉). This shows five of the
sixteen terms. Some cancel such that

d

dt
ρS(t) = −

∫ t

0

dt1 (IS ⊗ 〈ΩE|)
(
V +(t)V −(t1) (ρS(t1)⊗ IE) + ...

)
(IS ⊗ |ΩE〉)

because of V +(I⊗ |ΩE〉) = 0 and (〈ΩE| ⊗ I)V − = 0. Only four terms remain, and the first one is

(IS ⊗ 〈ΩE|)V +(t)V −(t1)
(
ρS(t1)⊗ IE

)
(IS ⊗ |ΩE〉)

=
∑
k,`

gk g` e
−i (ωk−ωa) t+i (ω`−ωa) t1 σ+σ−ρS(t1) 〈ΩE | b̂k b̂†` |ΩE〉 =

∑
k

g2
k e

i (ωk−ωa) (t1−t) σ+σ−ρS(t1)

because 〈ΩE | b̂k b̂†` |ΩE〉 is just a delta function. Note that the environment is no longer present in this
equation. The other three terms can be calculated similarly.
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The final result including the other three terms is

d

dt
ρS(t) = −

∫ t

0

dt1

{
Γ(t− t1)

[
σ+σ−ρS(t1)− σ−ρS(t1)σ+

]
+
[
−σ−ρS(t1)σ+ + σ+σ−ρS(t1)

]
Γ(t− t1)

} (2.40)

where Γ(τ) =
∑
k g

2
k e
−i (ωk−ωa) τ . This equation is not memoryless because of t− t1 but it involves only

the system density operator and nothing from the environment anymore. This equation is also no longer
completely positive because of the approximation truncating the Taylor expansion.

One can surprisingly recover complete positivity by making more approximations. To make the Markov
approximation the sum is replaced by an integral in a first step such that

Γ(τ) =
∑
k

g2
k e
−i (ωk−ωa) τ ⇒ Γ(τ) =

∫ ∞
0

dω ρ(ω) g2(ω) e−i (ω−ωa) τ

where ρ(ω) is the density of states assumed to be smooth but infinite while χ(ω) = ρ(ω) g2(ω) is firstly
assumed to be finite and secondly assumed to be slowly varying over a frequency range ω ≈ ωa.

If χ(ω) = ρ(ω) g2(ω) is slowly varying then the Fourier transformed
χ̂(ω) after a phase-shift looks like a delta function as illustrated in
the figure on the right side and Γ(τ) can be approximated as

Γ(τ) = Γ0

∫ ∞
0

dω e−i (ω−ωa) τ χ(ω) = Γ0 χ̂(ω) ei ωa τ

∼= Γ0 δ(τ) ei ωa τ

to complete the Markov approximation. This turns the equation (2.40) into a memoryless equation

d

dt
ρS(t) ∼= −

(∫ t

−∞
dt1 Γ(t− t1)

)[
σ+σ−ρS(t1)− σ−ρS(t1)σ+

]
+
[
−σ−ρS(t1)σ+ + σ+σ−ρS(t1)

](∫ t

−∞
Γ(t− t1) dt1

)
changing also the lower integration boundary to −∞.

2.8 Bosonic Solutions of the Lindblad Equation

The left integral is just a complex number written as γ
2 + i∆ωa with real and imaginary part such that

d

dt
ρ = −i

(
∆ωa

2

)[
σ2, ρ

]
+ γD[σ−](ρ) (2.41)

with the definition D[A](ρ) = AρA†− 1
2 (A†Aρ+ρA†A). This is a memoryless equation where the original

Hamiltonian shows up as σ2 with a frequency factor ∆ωa

2 . The term −i(∆ωa

2 )[σ2, ρ] represents the unitary
part of the dynamics and γD[σ−](ρ) the non-unitary part. This equation is called the Lindblad equation
and has the remarkable property that it generates a completely positive map. For finite-dimensional
systems any evolution equation in quantum mechanics that is continuous and memoryless gives rise to a
Lindblad equation. For infinite-dimensional systems this is still controversial.

In order to solve equation (2.41) with its 2×2 matrices the frequency shift is set to zero ∆ωa = 0 because
the unitary part is not the interesting part of the dynamics as it just generates a rotation on the Bloch
sphere. The goal is to solve the equation of motion

d

dt

(
p x̄
x 1− p

)
= γ

{(
0 1
0 0

)(
p x̄
x 1− p

)(
0 0
1 0

)
− 1

2

(
0 0
0 1

)(
p x̄
x 1− p

)
− 1

2

(
p x̄
x 1− p

)(
0 0
0 1

)}
= γ

(
1− p − 1

2 x̄
− 1

2x −(1− p)

)
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where the equation with p and the equation with x nicely decouple. This lead to the two equations

dp

dt
= γ(1− p) dx

dt
= −γ

2
x

and the other two equations are the same. Their solution is

p(t) = 1− e−γt
(
1− p(0)

)
x(t) = x(0) e−

γ
2 t ρ(t) =

(
1− e−γt

(
1− p(0)

)
x̄(0) e−

γ
2 t

x(0) e−
γ
2 t e−γt

(
1− p(0)

))
where all the four exponential terms converge to zero and the off-diagonal terms representing coherence
therefore decay exponentially quickly in time.

On the Bloch sphere in the figure on the right side all states move to |0〉. Thus, this atom
will be with very high probability in its ground state(

1 0
0 0

)
after a characteristic decay time depending on γ. The quantum of energy in the atom if there was one
propagates to the environment, flies away with the speed of light and never comes back.

This is a prototype for every other calculation one can do with decoherence processes. There is an
environment that acts as a gigantic measuring instrument and sucks out coherence sending the system
to a fixed point. This fixed point limt→∞ ρ(t) = ρSS is called the steady state and is ρSS = |0〉 〈0| in the
case of the two-level atom in the example.

Another example is a cavity in the form of a box with mirrors and light in it
drawn on the right side. One of the mirrors is not perfect and the others are as
perfect as one can make them. Thus, whatever electromagnetic field was initially in the box will decay
after some time, and the situation is as in an elevator with mirrors where one sees a long tunnel getting
darker and darker. The total Hamiltonian after the rotating wave approximation is

H = ωC â
†â+

∑
k

ωk b̂
†
k b̂k +

∑
k

gk

(
â†b̂k + â b̂†k

)
where the three terms correspond to HS, HE and Vint, respectively. Assuming weak coupling the solution
after the Born-Markov approximation becomes

d

dt
ρ = γ(n̄+ 1)D[â]ρ+ γ n̄D[â†]ρ (2.42)

where n̄ means the number of photons outside the cavity at cavity frequency ωC. There is an additional
second term coming from the fact that if one assumes the environment is not in the vacuum state but in
some thermal state then there is a chance for the environment to incoherently stuff a photon back into
the box. The total initial state is

ρSE(0) ≡ ρS(0)⊗
(

e−βHE

tr(e−βHE)

)
where the cavity as the system contains some photons and the environment is in some thermal state.

To compare (2.42) with (2.41) the environment is assumed to be in a vacuum ρE = |Ω〉 〈Ω| such that
equation (2.42) becomes

d

dt
ρ = γD[â]ρ

and looks very similar to (2.41) with ∆ωa = 0. Hovever, this is an infinite-dimensional equation because
ρ represents an infinite number of degrees of freedom as there is a harmonic oscillator inside the box and
not a spin. One can still solve it using the characteristic function χ(ξ) = tr(ρD(ξ)) and gets

d

dt
χ(ξ) = γ tr

(
ρ
(
â†D(ξ)â− 1

2
D(ξ)â†â− 1

2
â†âD(ξ)

))
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leading to the equations of motion

∂tχ(ξ) =
γ

2

(
−|ξ|2 − ξ ∂ξ − ξ ∂ξ

)
χ(ξ)

because every derivative with respect to ξ or ξ brings down factors of â and â†. One can actually solve
this equation and gets

χ(ξ) = e
K(t)

2 |ξ|
2

K(t) = 1− e−γt
(
1−K(0)

)
by guessing that χ(ξ) is a quadratic function. The function K(t) equals the function p(t) for the two-level
atom example above, and both are Fokker-Planck type equations. This is not a surprise because χ(ξ)
more and more looks like the characteristic function of the vacuum. All photons have left the cavity and
the box is in a vacuum state. The case where the environment is in a thermal state instead of the vacuum
state is a bit more complicated and is not covered here.

2.9 Quasi-Free Fermion Systems

So far systems embedded in a environment which is comprised of bosonic degrees of freedom have been
studied. The natural system to consider for fermions is a block of conducting material (usually a resistor)
and in it is some kind of impurity or quantum dot like a cavity for electrons. It turns out that one can
model the passage of the electrons through that quantum dot with a formalism essentially identical with
the one derived above for cavities and other open quantum systems. As a bonus one gets to solve all
fermion systems quasi for free.

As the environment in the bosonic case has been modeled as a bath of harmonic oscillators one considers
for the fermionic case the most general model with a quadratic Hamiltonian

Ĥ =
1

2

n∑
j,k=1

(
f̂†j [A]jkf̂k − f̂j [A]jkf̂

†
k + f̂j [B]jkf̂k − f̂†j [B]jkf̂

†
k

)
(2.43)

in terms of two n× n matrices A and B. This Hamiltonian can be written as

Ĥ =
1

2
f̂
T
H f̂ H =

(
B −A
A −B

)
f̂ = (f̂1, ..., f̂n; f̂†1 , ..., f̂

†
n) (2.44)

in a compact form. This is the most general model with creation and annihilation operators f̂†j and f̂j ,
respectively, for n spinless fermions. The anticommutation relations are{

f̂j , f̂
†
k

}
= δjk

{
f̂j , f̂k

}
=
{
f̂†j , f̂

†
k

}
= 0 (2.45)

as expected for fermions. To ensure Ĥ = ĤT requires that matrix A is real and symmetric and that
matrix B is real and antisymmetric. (There is actually a possibility to make these two matrices complex
when one puts a fermion into an magnetic field.)

One can solve this model exactly the same way as for the bosonic case by doing some canonical rotations
of the operators. Before that can be done the fermionic position and momentum operators have to be
defined because the operators f̂j are not hermitian. Introducing Majorana operators

ĉ = Ω f̂ Ω =
1√
2

(
I I
−iI iI

)
Ω−1 =

1√
2

(
I iI
I −iI

)
(2.46)

which are very much like the position and momentum operators. Two of these operators are

ĉ1 =
1√
2

(
f̂1 + f̂†1

)
ĉn+1 =

1√
2

(
−i f̂1 + i f̂†1

)
as examples where ĉ1 is like the position x̂ and ĉn+1 like the momentum p̂. Note also that the Majorana
operators are hermitian operators obeying anticommutation relations {ĉj , ĉk} = δjk.
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The Hamiltonian becomes

Ĥ =
i

2
ĉT
(

0 V

−V T 0

)
ĉ V = A+B (2.47)

where V is not hermitian because A is symmetric but B is antisymmetric. Thus, one cannot expect to
diagonalize V in terms of orthogonal matrices but one can use singular value decomposition

V = O
1
DOT

2
D = diag(σ1, σ2, ..., σn) σ1 ≥ σ2 ≥ ... ≥ σn

with two orthogonal matrices O
1
, O

2
∈ O(n). One gets O

1
by diagonalizing the symmetric matrix V V T

and O
2

by diagonalizing the symmetric matrix V TV . The canonical transformation

ĉ′ =

 ĉ′1
...
ĉ′2n

 =

(
OT

1
0

0 OT
2

) ĉ1
...
ĉ2n


preserves the anticommutation relations. The Hamiltonian in the new Majorana operators

Ĥ =
i

2
ĉT
(

0 V

−V T 0

)
ĉ =

i

2
(ĉ′)T

(
O

1
0

0 O
2

)(
0 V

−V T 0

)(
OT

1
0

0 OT
2

)
(ĉ′)

=
i

2
(ĉ′)T

(
0 D
−D 0

)
(ĉ′)

(2.48)

is not diagonal but is as good as diagonal.

Defining b̂ = Ω−1ĉ′ which are not hermitian operators but creation and annihilation operators brings the
Hamiltonian into the form

Ĥ =
1

2
b̂
T
(

0 −D
D 0

)
b̂ =

n∑
j=1

σj

(
b̂†j b̂j −

1

2

)
(2.49)

with b̂
T

= (b̂1, ..., b̂n; b̂†1, ..., b̂
†
n) where the left term shows that there is a bunch of n decoupled fermion

oscillators.

Fermion oscillators are much simpler than boson oscillators such that one can easily determine the ground
state. The Hilbert space for a fermion oscillator has only two dimensions and the Hamilton operator looks
like

Ĥ = b̂†b̂ ∼=
(

0 0
0 1

)
with the two states |0〉 (upper row and left column in the matrix) with one fermion in the system and
|1〉 (lower row and right column in the matrix) with one fermion in the system. The ground state is the

empty state |0〉 with b̂ |0〉 = 0, and the only other state is |1〉 = b̂† |0〉 because one cannot have more than
one fermion in the same mode.

Many-body fermion systems such as the one in (2.49) have a Hilbert space which grows with the number
of particles but is finite-dimensional and not infinite-dimensional as for the boson systems. The dimension
is 2n for a system with n fermions. The Hamiltonian (2.49) shows as mentioned above n independent
oscillators. The ground state is unique if all σj are bigger than zero but some σj may be zero. Thus, the

ground state space of Ĥ is 2n−rank(V )-fold degenerate. In the following V is assumed to have full rank.

The ground state is the empty vacuum in terms of the operators b̂j such that b̂j |Ω〉 = 0 for j = 1, ..., n.
This looks odd because it is different what one learns about fermions especially those in a metal. A metal
has a description in terms of a Fermi sea which is full of fermions. This is not in contradiction with this
because the operators b̂j are not the original fermion operators but some superpositions of them. Using

the operators f̂j instead shows that this ground state has many particles in it.
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The gap between the ground state and the first excited state is

∆E =
√
λmin(V V T ) =

√
λmin

(
(A+B)(A−B)

)
(2.50)

since all eigenvalues of the model Ĥ can be calculated. The first eigenvalue Ĥ |Ω〉 = E0 |Ω〉 is

E0 = −1

2

n∑
j=1

σj

and the next eigenvalues are Ej = E0 + σj for the single-particle state b̂†j |Ω〉 and Ej<k = E0 + σj + σk

for the two-particle state b̂†j b̂
†
k |Ω〉. Finally, the eigenvalue is

E12...n =
1

2

n∑
j=1

σj

for the n-particle state b̂†1b̂
†
2...b̂

†
n |Ω〉. The ground state energy is negative, and the eigenvalues grow from

the j-particle state to the j+ 1-particle state because the values σj are assumed positive as stated above.
For the gap between the ground state and the first excited state the single-particle state with the lowest
energy is used as indicated by λmin in (2.50) meaning the minimal eigenvalue.

The result of the above calculations is that practically every quadratic fermion model one can encounter
has been diagonalized. This includes metal, the Dirac equation, Majorana fermions and superconducting
wires, and this result is completely general as it does not restrict the model with the exception that it
must be quadratic.

It is clear what is meant by the fact that a bosonic model is Gaussian but it is less clear what is meant
by the statement that this ground state is Gaussian because firstly there is no characteristic function
and secondly there are Grassmann numbers involved. The statement that the ground state is Gaussian
means that it is determined by its second moments. The covariance matrix for a fermion model is defined
as the 2n× 2n matrix[

Γ′
]
jk

= 〈Ω |
[
b̂
]
j

[
b̂
]
k
|Ω〉 Γ′ =

(
0 I
0 0

)
(2.51)

with j, k = 1, ..., 2n similarly to the bosonic case. Because b̂ contains elements b̂` and b̂†` the covariance

matrix contains four types of terms [b̂]j [b̂]k. It has the simple form shown in (2.51) because only terms

b̂j b̂
†
k are non-zero.

The covariance matrix in terms of ĉ is defined as

[
Γ
]
jk

= 〈Ω | [ĉ]j [ĉ]k |Ω〉 =

(
O

1
0

0 O
2

)(
Ω
)

Γ′
(
Ω
)T (OT

1
0

0 OT
2

)

=
1

2

(
I i O

1
OT

2

−i O
2
OT

1
I

) (2.52)

and in terms of f̂

〈Ω |
[
f̂
]
j

[
f̂
]
k
|Ω〉 =

(
Ω−1

)
Γ
(
Ω−1

)T
=

1

4

(
V̄
T − V̄ 2 I + V̄

T
+ V̄

2 I− (V̄
T

+ V̄ ) V̄ − V̄ T

)
(2.53)

where V̄ = O
1
OT

2
.

Gaussian models for bosons and for fermions are easy in the sense that one can determine everything
about their eigenvalues and eigenvectors. One can usually not say much about models which are not
Gaussian but these quadratic models are often used as a starting point. One can solve them completely
and add a small perturbation for other models to be solved using perturbation theory.
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Note that the ground state |Ω〉 is not necessarily empty but may contain fermions. The average number
of fermions in terms of the original variables in the ground state is

n∑
j=1

〈Ω | n̂j |Ω〉 =

n∑
j=1

〈Ω | f̂†j f̂j |Ω〉 =
n

2
−

n∑
j=1

1

4

(
V̄
T

+ V̄
)
jj

=
1

2
tr(I)− 1

2

(
O

1
OT

2

)
containing n

2 particles plus something that can vary between ±n2 depending on O
1

and O
2
. Thus, it can

vary between no fermions and the situation where every single fermion mode is occupied. One can see
this when free fermions are hopping in the presence of a reservoir kept at a chemical potential µ.

2.10 Example of the Tunneling of Fermions Through a Quantum Dot

As an example the master equation describing the tunneling of fermions through
a quantum dot between two fermion reservoirs is derived. This is the closest
analogy for fermions in an optical cavity. An optical cavity is actually coupled to two reservoirs with the
in-modes and the out-modes as shown in the figure on the right side. The in-modes and the out-modes
are usually both in the vacuum for bosons.

The situation is different for the fermions as illustrated in the figure on
the left side. There are two fermionic reservoirs where one has a higher
chemical potential than the other. It is assumed that the quantum dot
has a single bound state with energy Ec and that it is connected via
tunnel junctions to the fermion reservoirs. There is a bias voltage VSD

across source and drain. Both reservoirs are at thermal equilibrium at temperature T but with different
chemical potentials µS and µD. The Hamiltonian is

ĤQD+leads =
∑
k

ES
k â
†
kâk + Ecĉ†ĉ+

∑
p

ED
p b̂
†
pb̂p

+
∑
k

(
(T S
k )ĉ†âk + (T S

k )∗â†k ĉ
)

+
∑
p

(
(TD
p )b̂†pĉ+ (TD

p )∗ĉ†b̂p

) (2.54)

with one term for the quantum dot and two terms for the reservoirs. The three terms in the first line are
Ĥ0 and the two terms in the second line are V̂ . The operators âk, ĉ, b̂p are fermion operators for source,
dot, drain, respectively, but note that the operators ĉ are not Majorana here. The anticommutation
relations are {âk, â†`} = δk`, {ĉ, ĉ†} = I, {b̂p, b̂†q} = δpq, and all others vanish. The matrices T S

k and TD
p

are the tunneling coefficients, and they contain small numbers because the transitions from the source to
the dot and from the dot to the drain are classically forbidden. It is assumed that the fermions tunnel

one by one from one lead to the other. The energies ES
k = k2

2m and ED
p = p2

2m are the non-relativistic
kinetic energies in the momentum basis because these are free fermions moving in the reservoirs. The
quantum dot is the system and the two leads are the environment.

This model with the total Hamiltonian Ĥ = Ĥ0 + V̂ is quadratic and can be diagonalized but it will not
be solved analytically because it does not give insight in how the equation of motion is determined. The
derivation of the Born-Markov master equation will be exactly followed as if the particles were bosons.
The resulting solution is only an approximation but it is easier to use than the analytic solution. It also
allows to describe the dynamics of the dot alone while the exact solution gives all the modes of the source,
the drain and the dot, and it is not easy to extract the dynamics of the dot.

The setup used is as follows for the total Hamiltonian Ĥ = Ĥ0 + V̂ . The ground state at time t = 0
where the tunnel junctions are very high is ρin = |ΩS〉 〈ΩS| ⊗ |Ωdot〉 〈Ωdot| ⊗ |ΩD〉 〈ΩD| where |ΩS〉 〈ΩS|
and |ΩD〉 〈ΩD| are filled with fermions due to the chemical potential. The state for the dot alone is

ρdot(t) = trS,D

(
e−i t Ĥ ρin e

−i t Ĥ
)

when the time goes on. This works when there is a huge resistance between the source and the drain.
The Born-Markov master equation for the dot alone requires that there is a small rate hopping into the
dot and there is a small rate hopping out of the dot. Outside this regime the approach shown here will
not work and another description of the model is needed but is not introduced here.
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In the interaction picture Ĥ0 is the free part and

V̂ (t) =

2∑
j=1

(
ĉ†Ŷj(t) e

i Ec t + ĉ Ŷ †j (t) e−i Ec t
)

Ŷ1(t) =
∑
k

T S
k âk e

−i ESk t Ŷ2(t) =
∑
p

TD
p b̂p e

−i EDp t

is the interaction part in the rotating frame where the free dynamics is trivialized. Now one can follow
the standard method introduced above for the bosonic case. This leads to an equation of motion for the
density operator ρ of the bound state of the quantum dot.

The reservoir correlation functions needed are

IjN(t) =

∫ t

0

dt1 〈Ŷ †j (t) Ŷj(t1)〉 e−i Ec (t−t1) IjA(t) =

∫ t

0

dt1 〈Ŷj(t1) Ŷ †j (t)〉 e−i Ec (t−t1)

where N stands for normal order and A stands for antinormal order. The antinormal ordered correlation
function is there because fermions can have a Fermi sea. It is assumed that the leads (also called “Fermi
reservoirs”) are in thermal equilibrium. Because of j = 1, 2 and N or A there are four cases but only one
is shown because the others are similar. One finds

I1N(t) =
∑
k

n̄S
k

∣∣T S
k

∣∣2 ∫ t

0

dt1 e
i(ESk−Ec)(t−t1) (2.55)

because

〈Ŷ †1 (t) Ŷ1(t1)〉 =
∑
k,`

(T S
k )∗(T S

` ) eiE
S
k t−iE

S
` t1 〈â†k â`〉 =

∑
k

∣∣T S
k

∣∣2 eiESk (t−t1) n̄S
k

due to 〈â†k â`〉 = n̄S
kδk` in thermal equilibrium.

In the next step the reservoir is approximated by introducing a density of state ρ(ω) and the sum is
replaced by an integral. (If the reservoir has a discrete number of energy levels then the reservoir and the
system will feed information back and forth and it is impossible for the reservoir to loose information.)
The correlation function (2.55) becomes

I1N(t) =

∫ ∞
0

dω ρ(ω) n̄S(ω)
∣∣T S(ω)

∣∣2 ∫ 0

−t
dτ e−i(ω−Ec)τ

where the second integral is highly oscillatory and can therefore be approximated by a delta function
because the only dominant contributions come from ω ≈ Ec. For Fermi reservoirs

n̄S(ω) =

(
1 + e

ω−ωf
kBT

)−1

where ωf is the Fermi energy. With the assumptions that Ec < ωf and that T is small in the order of 1 K
such that the average occupation of the reservoir is close to 1 the Markov approximation is applied. The
result is

I1N(t) =

∫ ∞
0

dω ρ(ω) n̄S(ω)
∣∣T S(ω)

∣∣2 ∫ 0

−t
dτ e−i(ω−Ec)τ ≈ π ρ(Ec)

∣∣T S(Ec)
∣∣2 =

γL

2

and this means that the number γL
2 replacing I1N(t) is dominated by the energy Ec of the dot. The other

correlation functions lead to similar numbers.

The equation of motion is

d

dt
ρdot(t) =

γL

2

(
2 ĉ† ρdot(t) ĉ− ĉ ĉ† ρdot(t)− ρdot(t) ĉ ĉ

†)
+
γR

2

(
2 ĉ ρdot(t) ĉ

† − ĉ† ĉ ρdot(t)− ρdot(t) ĉ
† ĉ
) (2.56)

and the Hilbert space for the quantum dot is Hdot
∼= C2 where |0〉 means no electron in the bound state

and |1〉 means one electron in the bound state. Superpositions of no electron and one electron are not
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possible thanks to the superselection rules. This equation can be solved easily and depends only on one
number. The average occupancy of the bound state is

〈n̂(t)〉ρ = tr
(
ĉ†ĉ ρ

)
and this is the probability that the electron is in the bound state. Differentiating gives

d

dt
〈n̂(t)〉 = tr

(
ĉ†ĉ

d

dt
ρ(t)

)
= γL tr

(
ĉ†ĉ ĉ†ρ ĉ

)
− γR tr

(
ĉ†ĉ ĉ†ĉ ρ

)
= γL tr

(
(I− n̂)(I− n̂)

)
− γR tr

(
n̂2 ρ

)
= γL (1− 〈n̂(t)〉)− γR 〈n̂(t)〉

using (2.56) with the facts that ĉ†ĉ† = ĉĉ = 0, ĉ†ĉ = n̂ and n̂2 = n̂.

The inhomogeneous linear first-order differential equation to solve is

dy

dt
= γL(1− y)− γR y = −(γL + γR)y + γL

after substituting y(t) = 〈n̂(t)〉. The fixed point (or equilibrium value) is 0 = −(γL + γR)y∗ + γL such
that y∗ = 〈n̂〉 = γL/(γL + γR). To get the full solution one solves the homogeneous part on the left side
and gets its solution on the right side

dy

dt
= −(γL + γR)y yh(t) = c e−(γL+γR)t

such that

y(t) = c e−(γL+γR)t +
γL

γL + γR

is the solution of the inhomogeneous differential equation. If it is not in equilibrium it rapidly relaxes
to the equilibrium value for the probability of the average number of electrons on the dot. With the
boundary condition 〈n̂(0)〉 = c+ γL/(γL + γR) the full solution is

〈n̂(t)〉 =

[
〈n̂(0)〉 − γL

γL + γR

]
e−(γL+γR)t +

γL

γL + γR
(2.57)

for the fermion cavity.

This is another example with the typical equation of motion

d

dt
ρS = D[Â]ρS

for the system alone. If one wants to describe the dynamics of the non-unitary dynamics of a system the
process has to be completely positive. This requirement for complete positivity places huge constraints
on the equation of motion if one assumes it to be Markovian such that the change in the state at time t
can only depend on the state at time t and not on the history.

2.11 Quantum-Mechanical Model for Continuous Position Measurement

A model is described here for a system that might be subjected to multiple measurements of position x̂.
There is a system such as a particle in a harmonic oscillator that is isolated from the environment except
at certain times when the system is measured with a process described by a completely positive map.
The process is repeated n times by interacting with a measurement device and then one checks in which
state the system is. Finally, one takes the limit n→∞.

There is a meter (or gauge) called M1 and this measurement device is a harmonic
oscillator. There are other meters called M2 to Mn of the same kind. The system
is initially closed off from the meters and the environment. At time t1 the system
interacts with the first meter M1, some time later at t2 it interacts with the second
meter M2 and so on until it interacts at time tn with the last meter Mn.
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This is not such a bad model for how experiments are done. Optically, there is a perfect cavity which
is the system in some state, and at t1 the cavity is interrogated via an interaction. The measurement is
the instantaneous interaction with the mode in the cavity with some measuring device. Then the cavity
is closed again and after some time it is interrogated a second time and so on. Finally, one looks at the
meters and looks at the result consisting most likely of a sequence of random numbers. The goal is to
describe the state of the meters and the state of the system. The added twist is to do more and more
measurements but weaker and weaker.

If one does the measurement of position with meter M1 too strong one slams it almost into a position
eigenstate. Later one does the second measurement and so on. If one does more and more essentially
projective measurements one encounters the quantum Zeno effect. This effect refers to the expression
“the watched pot never boils” in the quantum setting. If one keeps measuring the system in quantum
mechanics with strength such that the measurement is almost projective (watching the pot in the analogy)
then the system never evolves because it goes into an eigenstate of the observable and stays there. If
on the other hand the measurement is too weak then, as one increases the number of measurements and
decrease their strength, the system becomes effectively decoupled from the meters and evolves by itself
according to its own internal dynamics. There is a Goldilock spot in between where the setup is not in the
quantum Zeno regime and not in the completely decoupled regime but in an intermediate regime where
the meters interfere with the system just enough such that there is some back action between the two.
This intermediate regime turns out to be a really good model for how environments act with systems.

Thus, one models a sequence of instantaneous measurements at times tj = j τ , and the meter Mj for
the jth measurement is a quantum harmonic oscillator (a continuous quantum variable) with canonical
operators x̂j and p̂j satisfying [x̂j , p̂k] = i δjk prepared in a known state. The total Hilbert space is

Htot = Henv ⊗Hsys = HM1
⊗HM2

⊗ ...⊗HMn
⊗Hsys = L2(R)⊗ ...⊗ L2(R)⊗Hsys

for this process, and this process is time-dependent such that energy will not be conserved because certain
knobs will be twiddled. The time-dependent Hamiltonian

Ĥ(t) = Ĥ0 +

n∑
j=1

δ(t− j τ) x̂sys ⊗ p̂j (2.58)

describes this measurement process. One allows the system to evolve according to its natural Hamiltonian
Ĥ0, and at instances t = j τ the system is instantaneously interrogated with the meter Mj .

As an excursus to explain the term x̂sys ⊗ p̂j , this Hamiltonian for one system and one meter is due
to von Neumann. To describe a measurement of an observable there must be a measuring device that
corresponds to this hermitan operator. This measuring device should presumably also obey the rules of
quantum mechanics and must therefore have a Hamiltonian. If Âsys is a hermitian observable on Hsys

adjoined to an ancilla system (the meter) then the dynamics according to the Hamiltonian

ĤvN = Âsys ⊗ p̂

will carry out a measurement of the operator Âsys. At time t = 0 the combination of system and ancilla
is assumed to be in a product state |Ψ0〉 = |ψsys〉⊗ |x = 0〉 where the state of the meter |x = 0〉 is a delta
function and therefore a badly behaved object. Evolving this for a time t according to the Hamiltonian
ĤvN gives

|Ψt〉 = e−i ĤvN t |Ψ0〉 =

 m∑
j=1

|αj〉 〈αj | ⊗ e−i αj t p̂
 |Ψ0〉

using the decomposition of ĤvN

ĤvN = Âsys ⊗ p̂ =

m∑
j=1

(αj |αj〉 〈αj |)⊗ p̂

in terms of eigenvalues and eigenvectors. Substituting |ψsys〉 ⊗ |x = 0〉 for |Ψ0〉 results in

|Ψt〉 =

m∑
j=1

〈αj |ψsys〉 |αj〉sys |x = αj t〉meter
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using the fact that e−i αj t p̂ is the translation operator shifting in position. The state after the interaction
is an entangled state between the system and the meter. The quantity |x = αj t〉meter is called a pointer.
Looking at the pointer there are m possible values for the meter depending on αj and t. The meter is
entangled with the system and has some information about the system. Thus, one measures the meter.
(How this is done is not explained because otherwise one would need another process to do so and so on
infinitely many times. This is called the measurement problem.) The meter (the value of this particle
which is the meter) is in a superposition of values α1t, α2t and so on. There are m possible outcomes
depending on αj and this will project the system in one of these posterior states |αj〉 (eigenstates of the

hermitan operator). The probability that this occurs is |〈αj |ψsys〉|2. This is a way to measure a hermitian
operator (an arbitrary observable) by reducing the problem to measuring a single harmonic oscillator (a
single free particle). This ends the excursus on the von Neumann prescription to measure the hermitian
observable Âsys.

The Hamiltonian (2.58) involves this kind of measurement according to the theory of measurement of an
observable by von Neumann n times. There is no interaction with the system except at that instances of
time t = j τ when the system undergoes an interaction with the meter Mj .

To summarize the physics of the quantum mechanical model of continuous measurement explored here,
the goal of this model is to gain some intuition why a system will decohere. In order for a system to
lose coherence, information has to flow from it to the environment as time progresses. If there is no
transfer of information from the system to the environment then the system undergoes its own internal
unitary dynamics. If there is some initial state ρinit = |Ω〉 〈Ω| at time t = 0 which is pure then the
question is what is the mechanism for how this initially pure state loses its purity and becomes some kind
of mixed state ρ(t). The mechanism is that the environment gains information about the system, and
once the environment has gained information about the system it becomes correlated with the system.
Information gain by the environment is equivalent to the loss of coherence of the system or, in other
words, the system becomes entangled with the environment.

The Hamiltonian (2.58) introduced above describes the measurement process, and each meter Mj for
j = 1, ..., n is assumed to be in a known initial state

|Gj〉 =
1

(φσ)
1
4

∫ ∞
−∞

e−
x2j
2σ |xj〉 dxj

which is a Gaussian state with width σ. For an ideal projective type measurement of the system via this
von Neumann measurement prescription the meters have to be initialized in a delta function of position.
The full initial state of the system and the meters is

ρ(0) = ρsys ⊗ |G1〉 〈G1| ⊗ |G2〉 〈G2| ⊗ ...⊗ |Gn〉 〈Gn|

at time t = 0. (Note that ρ depends on σ.) If one prepares the meters and turns off the measurement
apparatus the system would evolve according to its internal unitary dynamics generated by Ĥ0 and remain
in its pure state. However, with meters turned on instantaneous interactions between the system and a
meter take place at the stroboscopic times t = j τ and a little bit of information flows from the system
to the corresponding meter and back because information flows bidirectional in quantum mechanics.

If ρsys(t
−
j ) is the system state just before the jth measurement then the joint state of the system and the

corresponding meters is

ρMj ,sys(t
+
j ) = e−i x̂sys⊗p̂j

[
|Gj〉 〈Gj | ⊗ ρsys(t

−
j )
]
ei x̂sys⊗p̂j

after the jth measurement. The first and last term are just unitary evolution while the term in the middle
couples the system with the jth meter, and the system becomes entangled with the jth meter. The meter
Mj is measured in the basis |xj〉 conditional the system state leading to

ρsys(t
+
j , xj) =

(〈xj | ⊗ I)(ρMj ,sys)(|xj〉 ⊗ I)
P (xj)

Ŷ (y) =
1

(π σ)
1
4

e−
(yI−x̂)2

2σ

=
Ŷ (xj) ρsys(t

−
j ) Ŷ †(xj)

tr
(
ρMj ,sys Ŷ †(xj) Ŷ (xj)

) (2.59)
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where P (xj) is the probability required for the normalization. This is modeling the case of the selective
measurement where one looks at the meter at time tj .

In the case of the non-selective measurement one does not look at the meter. The system is measured
and gets correlated with the meter variable but then the result of the measurement is thrown into the
bin. This has still some back action on the system because of the interaction with the variable. In this
case the state is the completely positive map

ρsys(t
+
j ) =

∫
dxj Ŷ (xj) ρsys(t

−
j ) Ŷ †(xj)

where the meters are ignored and this is the same as averaging over all the outcomes of the selective
measurements. This is the case where the meter or pointer variable is controlled by an environment that
tries to gain access to the quantum system. Since the environment has the meters and not the physicists
one has no access to the outcome of the measurement.

The environment behaves like a spy but unlike the classical case where a spy can take photographs of a
secret document without leaving a trace behind here the secret document burns up when photographed.
This is the physical explanation for how quantum cryptography works. It boils down to the fact that if
somebody measures a quantum system then there is a back action on the system. As long as one can
detect this back action one knows that an eavesdropper has intercepted the message. Information gain
in quantum mechanics always leads to the disturbance of the system.

The above calculations show what happens just before and after this instance tj in time of the jth

measurement, and it is assumed that the measurement process is so fast that no dynamics occur during
the measurement but between the measurements there is some unitary dynamics. Thus, the next question
is what happens between the measurements where the system evolves according to

U(τ) = e−iĤ0 τ

freely. If ρsys(0) is the initial state at time t = 0 and one obtains the measurement outcomes x̄1, x̄2, ..., x̄n
then the state just after the jth measurement is

ρsys({x̄1, ..., x̄j}, t+j ) =

(∏j
k=1 Y (x̄k)U(τ)

)
ρsys(0)

(∏j
k=1 Y (x̄k)U(τ)

)†
P ({x̄1, ..., x̄j})

=

(∏j
k=1 Y (x̄k)U(τ)

)
ρsys(0)

(∏j
k=1 Y (x̄k)U(τ)

)†
tr

((∏j
k=1 Y (x̄k)U(τ)

)†(∏j
k=1 Y (x̄k)U(τ)

)
ρsys(0)

) (2.60)

with

P ({x̄1, ..., x̄j}) = tr

(( j∏
k=1

Y (x̄k)U(τ)

)†( j∏
k=1

Y (x̄k)U(τ)

)
ρsys(0)

)
using (2.59) and the unitary free evolution due to Ĥ0. The products are taken from increasing values
of k on the left. This is the full selective evolution of the system during these n measurements. The
state after j of those position measurement is (2.60) conditioned on getting the measurement outcomes
x̄1, ..., x̄j . It shows that the system must have undergone this non-unitary process in order to end up in
the state ρsys({x̄1, ..., x̄j}, t+j ). From now on approximations are applied to explore this result further.

The sequence x̄1, ..., x̄j is called a measurement trajectory and looks like some random
walk as in the figure on the right side. Each of these measurement records as a kind of
history of the measurement process leads to a trajectory in (2.60) as a conditional state
that depends on these random numbers from the measurements.

In the case of the non-selective evolution where one cannot look at the meters and the environment has
control over them, one averages over all possible outcomes of the measurements. This is much easier
because one does not need to know the measurement outcomes. The state after the jth measurement is

ρsys(t
+
j ) =

∫ ( j∏
k=1

dx̄k

)
ρsys({x̄1, ..., x̄j}, t+j )P ({x̄1, ..., x̄j}) (2.61)
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and looks still quite complicated, but one can approximate it in a controlled way. The following steps
are not rigorous but could be made rigorous.

For continuous measurement one studies the limit n → ∞ and τ → 0 of this non-selective evolution by
increasing the number of measurements and by reducing the time between measurements. To observe the
system over a fixed interval of time t the number n of measurements and the gap τ between measurements
are adapted in just the right rate by making nτ constant. Thus, an infinite number of measurements are
done in a constant time. By doing so the equation (2.61) is turned into a differential equation.

In order to get the corresponding master equation the evolution equation is written as

d

dt
ρsys(t) = lim

τ→0

ρsys(t
+
n )− ρsys(t

+
n−1)

τ

for a density operator ρsys(t). Because of the fact that nτ is constant the instances in time of ρsys(t
+
n ) and

ρsys(t
+
n−1) come closer together. One can define a Brownian motion process taking place in the entries of

the density operator. Using (2.60) and (2.61) the limit becomes

d

dt
ρsys(t) = lim

τ→0

[
1

τ

∫ ∞
−∞

dx̄ Ŷ (x̄)U(τ) ρsys(t
+
n−1)U†(τ) Ŷ †(x̄)− 1

τ
ρsys(t

+
n−1)

]
and one can exploit the fact that Ŷ (x̄) and |Gj〉 are Gaussians of width σ. The formula∫ ∞

−∞
dx̄ Ŷ (x̄) Â Ŷ †(x̄) = Â− 1

2σ

[
x̂sys,

[
x̂sys, Â

]]
+O

(
1

σ2

)
can be derived using the fact that Ŷ are bounded operators and expanding them around the identity.
One sees the influence of σ because the larger σ is the less effect the second term has. With σ = ∞ on
one hand the integral over x̄ would be nothing and leave the argument untouched such that the system
just undergoes unitary evolution. With σ close to zero on the other hand the second term dominates and
overwhelms the identity contribution.

The quantity σ measures the width of the pointer state of the meter. The larger σ is the wider is this
state of the meter. If σ is infinity then the meter is essentially in a zero momentum eigenstate such that
it is in an equal superposition of position over all space. The von Neumann measurement prescription
does not give any information about the system because it is an eigenstate of momentum. In the other
case where σ is close to zero then the wave function of the meter is almost a delta function such that
nearly everything is distinguishable with respect to the von Neumann prescription. There is a kind of
Goldilock position in between which is interesting.

Using the Taylor expansion U(τ) = I− i Ĥ0 τ +O(τ2) gives

d

dt
ρsys(t) = lim

τ→0

[
1

τ

(
ρsys(t)−

1

2σ

[
x̂sys,

[
x̂sys, ρsys(t)

]]
− i
[
Ĥ0, ρsys(t)

]
τ

)
− 1

τ
ρsys(t)

]
= lim
τ→0

[
− 1

2στ

[
x̂sys,

[
x̂sys, ρsys(t)

]]
− i
[
Ĥ0, ρsys(t)

]]
showing that σ is tied to τ . As long as the width of the initial states of these measurement or meter
states scales as 1

τ and gets wider the more measurements one does then there is a non-trivial limit. The
differential equation becomes

d

dt
ρsys(t) = −i

[
Ĥ0, ρsys(t)

]
− 1

4D

[
x̂sys,

[
x̂sys, ρsys(t)

]]
(2.62)

with στ → 2D constant. As long as one chooses each meter to be in a very very broad Gaussian initial
state then one can end up in a non-trivial dynamics like this.

Three scalings are of interest:

Case 1: σ > 1
|τ |

As τ goes to zero the left term in (2.62) goes to infinity and overwhelms the right term. The left
term dephases everything off the diagonal and projects the system on a position eigenstate where
it remains. This is the quantum Zeno regime because one makes such a strong measurement of
position at each instance of time that the system cannot undergo any evolution.

33



Case 2: σ = 1
τ ⇒ non-trivial

This is a balanced regime between the unitary dynamics and the quantum Zeno regime. The
system undergoes dissipation and unitary evolution at the same time.

Case 3: |σ| < 1
|τ |

In this case which could be called the unitary regime the first term in (2.62) vanishes and the
evolution is just the unitary evolution. The meters gain no information at all.

Depending on Ĥ0 the differential equation (2.62) can be solved or cannot be solved. When it is quadratic
it can be solved but in general it cannot be solved. If one continuously monitors the position of the
particle but one does it very weakly then the system undergoes unitary evolution but there is some back
action due to the measurements which takes the form of a dissipation.

The free particle as the simplest possible system is used as an example. Given the Hamiltonian

Ĥ0 =
p̂2

sys

2m

the expectation value of position

〈x̂sys〉 (t) = tr
(
ρsys(t) x̂sys(t)

) d

dt
〈x̂sys〉 (t) =

〈p̂sys〉
m

d

dt
〈p̂sys〉 (t) = 0

shows the expected unitary dynamics, and momentum is conserved. It looks as if there is no dissipation
at all. Looking at the variance (the momentum distribution)

〈(∆p̂sys)
2〉 (t) = 〈(∆p̂sys)

2〉 (0) +
t

2D

shows that the momentum wave function starts to broaden linearly with time as time progresses. This
measurement of position starts to have a back action on the momentum distribution. That is to be
expected because measuring position makes momentum less certain according to the uncertainty principle.

2.12 Working with Superoperators

The equation of motions for a system in the presence of an environment have been determined for the
reduced density operator system in several cases above by derivations and approximations. The density
operator for the system alone got the very special form

d

dt
ρsys(t) = −i

[
Ĥ0, ρsys(t)

]
− γ

∑
j

{
L†jLj , ρsys(t)

}
− 2Lj ρsys(t)L

†
j (2.63)

with just the right number of approximations. There is some kind of system Hamiltonian contribution
and some additional terms. This is a first-order differential equation in time which gives some effective
dynamics when solved. Because this differential equation is first order in time and the right-hand side is
homogeneous the solution can be expressed as an exponential

ρsys(t) = etL (ρsys(0))

where L is a superoperator defined as

L(ρ) = −i
[
Ĥ0, ρ

]
− γ

∑
j

{
L†jLj , ρ

}
− 2Lj ρL

†
j

which eats a density operator and returns a hermitian operator.

This differential equation (2.63) is not different from an ordinary standard first-order differential equation
of the form dy

dx = −Ly for a function y(x) with x ∈ R and y(x) ∈ R. It has the solution y(x) = e−Lxy(0).
Equation (2.63) is just a matrix version of this differential equation where the matrix version has the
form dv

dx = −Lv and where v ∈ CD, L ∈ MD(C) and L is hermitian or normal, and its solution is
v(x) = e−Lxv(0). Since ρ is a matrix and not a vector equation, equation (2.63) looks different but it is
just an encoded form of the matrix version of the differential equation. The trick is to take the matrix
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ρ and string it out like a vector, and to vectorize ρ one does what also a computer would do in order
to store a matrix in memory. One can draw a snake through the entries of the matrix and line it up as
some big vector with the components ρ00, ρ10, ρ20, ..., ρD−10, ρ01, ..., ρD−1D−1 with D2 entries. Then the
left-hand side of (2.63) is in the form of the matrix version of the differential equation. The right-hand
side consists of three linear operators with a corresponding matrix form to be vectorized the same way.

There is no unique way for vectorizing a matrix but the standard way is for ρ in a computational basis
to create a ket-vector

ρ =
∑
jk

ρjk |j〉 〈k| ⇒ |ρ〉 =
∑
jk

ρjk |jk〉

by turning around 〈k| ⇒ |k〉. This depends on the basis. When mapping ρ to |ρ〉 this way then Ĥ0 ρ
becomes (Ĥ0 ⊗ I) |ρ〉 = |Ĥ0ρ〉 and |ρĤ0〉 = I× ĤT

0 |ρ〉.

Applying this to the equation of motion (2.63) gives

d

dt
|ρ〉 =

−i(Ĥ0 ⊗ I− I× ĤT
0

)
− γ

∑
j

(
L†jLj ⊗ I + I⊗ L†jL̄j

)
+ 2γ

∑
j

(
Lj ⊗ L̄j

) |ρ〉 (2.64)

in the exactly equivalent vector form. The right side of (2.64) can be written as L |ρ〉. Therefore, this
differential equation and its solution are

d

dt
|ρ(t)〉 = L |ρ(t)〉 |ρ(t)〉 = et L |ρ(0)〉

and the solution becomes when devectorized ρ(t) = etL (ρ(0)) as shown above.

2.13 Dynamical Semigroups

The superoperator L is linear, and it takes a D × D matrix (a density operator) and returns another
D ×D matrix. Thus, it is a linear map L : MD(C) → MD(C). (Operators take vectors to vectors, and
superoperators take operators to operators.) It is interpreted as

etL =

∞∑
`=0

t` L`

`!

by its Taylor series. Defined as Et(ρ(0)) = etL (ρ(0)) the quantity Et is also a superoperator and has the
three properties:

(i) Et(ρ(0)) = ρ(0) in all cases considered here
(ii) Et is a completely positive trace-preserving map
(iii) Es(Et)) = Es+t
It is not given that Et is for all the above examples a completely positive trace-preserving map. The
equation of motion has been derived through several approximations. The starting point was a completely
positive dynamics namely the Schrödinger equation such that the whole system evolved unitarily. Making
approximations means eliminating terms which interact with the environment, and it is not clear why
the equation of motion in the end should preserve complete positivity.

This is not obvious as the example of the pure quantum state |ψ(t)〉 = c(t) |0〉 + d(t) |1〉 that depends
on a parameter t such as the quantum state of a single qubit shows. If one Taylor expands c(t) and
d(t) and truncates then almost always the result such as |ψ̃(t)〉 = (1 + c0t) |0〉 + |1〉, for example, is not
normalized. In other words, a state after an approximation may no longer be a state because Taylor
expansion destroys normalization. The above state can only be normalized in a way depending on t
because of the factor 1 + c0t.

The fact that the equation of motion after several approximation in all the examples above did lead to
a completely positive trace-preserving map Et has reasons. It will turn out that the only way to satisfy
the three properties (i), (ii), (iii) is when L has the above particular form.
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Dynamical semigroups are a mathematical topic which is independent of quantum mechanics. The topic
are families of maps indexed by non-negative real numbers. Thus, the topic are maps Es : CD → CD
which depend on a parameter s ∈ R+ and satisfy the properties:

(i) Es ◦ Et = Es+t
(ii) E0 = I

where the property (i) is called the semigroup property.

Proposition 1 Let Es ∈ MD(C) be a dynamical semigroup which is continuous in s ∈ R+. Then Es is
differentiable and has the form

Es = esL

for some L ∈ M(C).

Note that a continuous function does not need to be differentiable and that there are even continuous
functions not differentiable almost everywhere. (The function f(x) = |x|, for example, is not differentiable
at x = 0.) Here however to be continuous for a dynamical semigroup already ensures differentiability.
There is also no reason why a differentiable function should be an exponential function but for dynamical
semigroups this is the case.

The intuitive reason is that Es is continuous, Et is continuous and Es+t is continuous such that the
semigroup property is a kind of convolution. A slightly more formal proof states that since E0 = I and
Es is continuous there exists ε > 0 such that Mε defined as

Mε =

∫ ε

0

Es ds
d

dε
Mε

∣∣∣
ε=s

= Es

is invertible. (In the space of matrices MD(C) is Es a path starting from I.) The key property is that in
this space of matrices the space of invertible matrices is a connected set and connected to the identity,
and Mε is an invertible matrix for a small enough ε as one can see from det(Mε) 6= 0 except for ε = 0.
Inserting the identity gives

Es = M−1
ε Mε Es = M−1

ε

∫ ε

0

Es+t dt = M−1
ε

∫ s+ε

s

Et dt = M−1
ε (Ms+ε −Ms)

and shows that Es is differentiable due to the fundamental theorem of calculus. One can therefore write
d
dsEs = L Es = limε→0M

−1
ε (Ms+ε −Ms).

2.14 Quantum Dynamical Semigroups

In the case of quantum dynamical semigroups Es is a superoperator Es : MD → MD, and one can vectorize
it to get a dynamical semigroup. The main question is when Es is completely positive. In case it is then
Es is called a completely positive semigroup or a quantum semigroup.

Proposition 2 Let L : MD(C)→ MD(C) be a linear map. The following statements are equivalent:

1. There exists a completely positive map φ : MD(C)→ MD(C) and K ∈ MD(C) such that

L(X) = φ(X)−KX −XK†

for all X ∈ MD(C).
2. L is hermiticity preserving and, if

|Ω〉 =
1√
d

d∑
j=1

|j〉 |j〉

then
P
[(
L⊗ id

)(
|Ω〉 〈Ω|

)]
P ≥ 0

with P = I− |Ω〉 〈Ω|.
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Maps that satisfy the conditions in proposition 2 are called completely positive linear maps. Firstly it is
proven that statement 1 implies statement 2 and that follows from

P
[(
φ⊗ id

)(
|Ω〉 〈Ω|

)
−
(
K ⊗ I

)(
|Ω〉 〈Ω|

)
−
(
|Ω〉 〈Ω|

)(
K† ⊗ I

)]
P ≥ 0

because φ is a completely positive map and the last two terms vanish (P |Ω〉 = 0). Secondly it is shown
that statement 2 implies statement 1 using τ = (L⊗ id)(|Ω〉 〈Ω|) which is hermitian and satisfies P [τ ]P ≥
0. However, τ as a matrix has not only components PτP but also components from I − P = |Ω〉 〈Ω|.
One can write τ = Q− |ψ〉 〈Ω| − |Ω〉 〈ψ| and Q ≥ 0 to deal with these components where |ψ〉 contains all
of entries of τ in columns and rows containing |Ω〉 and Q ≥ 0 such that it is only non-zero in the block
orthogonal to |Ω〉. A completely positive map φ is defined via (φ ⊗ id)(|Ω〉 〈Ω|) = Q as well as K via
(K ⊗ I) |Ω〉 = |ψ〉 using vectorization. Hence, one can take L = φ( )−K( )− ( )K†.

Proposition 3 The following statements are equivalent:

1. Es is a dynamical semigroup of completely positive maps continuous in s.
2. Es = esL for some completely positive map L.

To show that statement 2 follows from statement 1 one already knows from proposition 1 that a generator
L : MD(C)→ MD(C) exists such that Es = esL. Because Es is completely positive, 0 ≤ (esL⊗ id)(|Ω〉 〈Ω|)
and this imposes sever conditions on L. Taylor expansion gives

0 ≤ (esL ⊗ id)(|Ω〉 〈Ω|) = |Ω〉 〈Ω|+ s(L⊗ id)(|Ω〉 〈Ω|) +O(s2)

and this is a projection and something of order s that is not a projection. Applying now the operator
P = I− |Ω〉 〈Ω| defined in proposition 2 to get

1

s
0 ≤ 1

s
P
(
|Ω〉 〈Ω|+ s(L⊗ id)(|Ω〉 〈Ω|) +O(s2)P

)
=

1

s
P
(
s(L⊗ id)(|Ω〉 〈Ω|) +O(s2)P

)
because P (|Ω〉 〈Ω|)P = 0. With the limit s → 0 it follows P (L ⊗ id)(|Ω〉 〈Ω|)P ≥ 0. Therefore, L has
the form L(X) = φ(X) −KX −XK† of a completely positive map φ(X) minus two terms where K is
non-hermitian.

In order to prove the other direction that statement 2 implies statement 1 one starts from Es = esL and
decomposes L = φ+ φK where φK = −KX −XK†. Using the Lie-Trotter formula gives

esL = lim
n→∞

(
e
sφ
n e

sφK
n

)
provable by Taylor expansion. The first term containing φ is completely positive as can also be shown
by Taylor expansion and the second term can be written as

e
sφK
n = e

−sK
n X e

−sK†
n

and is also completely positive because it has the form MXM† for a matrix M . Thus, esL is completely
positive.

To summarize, examples of systems embedded in environments have been studied above where Ĥsys+env

is the generator of time evolution

Usys+env(t) = e−iĤsys+env

for the combination of the system and the environment. Restricting the attention just to the system
and tracing out the environment allows to find equations of motions for the system alone to a very high
degree of approximation although the dynamics of the system alone cannot be exactly described as a
linear equation of motion. These approximated equations of motion looked like

d

dt
ρsys = −i [Hsys, ρsys] +

∑
j

LjρsysL
†
j −

1

2

{
L†jLj , ρsys

}
= L[ρS]

for an effective Hamiltonian Ĥsys for the system. This is no longer unitary although the left term
represents unitary evolution but the other two terms do not. The initially pure state esL[ρsys(0)] can
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become not pure. This is necessary if there is an exchange of information between the system and the
environment. It turned out that this kind of equation of motion occurs if and only if the dynamics
generated by esL[ρsys(0)] is completely positive. Calling esL = Es with the two properties E0 = I and
Es ◦ Et = Es+t one can ask whether these two properties already guarantee that the equation of motion
satisfied by the channel Es is of the above form, and this is indeed the case. The corresponding results
can be combined into a single theorem.

Theorem 1 (Lindblad) A linear map L : MD(C)→ MD(C) is the generator of a continuous dynamical
semigroup of trace-preserving, completely positive, linear maps if and only if

L(ρ) = i [ρ,H] +
∑
j

LjρL
†
j −

1

2

{
L†jLj , ρ

}
(2.65)

with H† = H and Lj ∈ MD(C).

The proof is based on the propositions 1, 2, 3, and uses the fact that if Es is a completely positive and linear
dynamical semigroup then Es = esL with L(X) = φ(X) −KX −XK† where φ is a completely positive
channel. The remaining property to be shown is the property trace-preserving and this means probability-
preserving such that as s passes the density operator one gets by applying Es to some initial state is still a
density operator. Because tr(Es(ρ)) implies tr(L[ρ]) = 0 for all possible ρ and L(X) = φ(X)−KX−XK†
one ends up with tr

(
φ(ρ)−Kρ− ρK†

)
= 0. It follows tr(φ∗(I) · ρ) = tr

(
(K +K†)ρ

)
if one defines φ∗(I)

to be the matrix which satisfies tr(φ∗(I) · ρ) = tr(I · φ(ρ)) for all ρ. This means φ∗(I) = K+K†. According
to a structure result called the Kraus representation any completely positive map φ may be written as

φ(ρ) =
∑
j

LjρL
†
j

for some Lj ∈ MD(C). It follows that φ∗(I) =
∑
j L
†
jLj . The remaining task is to extract from Kρ+ρK†

the first and last term in (2.65), and one can show that the definition

K = iH +
1

2

∑
j

L†jLj

exactly does this. Both matrices H and L†jLj are hermintian, and an arbitrary matrix such as K can
always be written as a hermitian part and i times a hermitian part. Thus, L(ρ) can be written as

L(ρ) =
∑
j

LjρL
†
j −

iH +
1

2

∑
j

L†jLj

 ρ− ρ

−iH +
1

2

∑
j

L†jLj


corresponding to (2.65).

This theorem of Lindblad confirms that the effective equation resulting from the master equation is a
physical process. There is no reason why this equation should be a completely positive map after all
these approximations and truncations, but luckily any time one has an effective equation of motion in
the form (2.65) then one knows that it is an implementable operation in quantum mechanics.

2.15 Quantum Jumps

The path so far has started from a system embedded in an environment and one looks only at the system
neglecting the environment. The result is an effective equation of motion for the system. However, one
can as well go the other way. Given a Lindblad equation of the particular form (2.65) with some Lj and
H the question arises whether there is a unitary process whose effective dynamics generate exactly this
equation of motion.

Quantum jumps are theoretically an interesting way to realize non-unitary dynamics but they are actually
also what one sees in the lab when looking at detectors. Thus, there are two reasons to study them. Note
that there is a relation between quantum jumps and quantum trajectories.
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Above the path from the big unitary for a continuous measurement process to a Lindblad effective equation
of motion has been explored. Now the reverse path from a Lindblad effective equation of motion to the
continuous measurement process is studied. Given a Lindblad equation

d

dt
ρ = −i[Ĥ, ρ]− 1

2
{ĉ†ĉ, ρ}+ ĉ ρ ĉ†

only this simple case is shown but the case with multiple ĉj can be generalized similarly. This equation will
be derived as a result of a generalized continuous measurement process. The measurement is dichotomic
and one gets either zero or one

M0(dt) = I−
(
R̂

2
+ i Ĥ

)
dt M1(dt) =

√
dt ĉ

when using this measurement apparatus where M0(dt) with R̂ = ĉ†ĉ means no click in a time window dt
and M1(dt) means a click in the time window dt. The time window dt is not infinitesimal but arbitrarily
small yet finite. One can check that these two measurement operators M0(dt) and M1(dt) satisfy

M†0 (dt)M0(dt) +M†1 (dt)M1(dt) = I

and correspond therefore to a legal measurement process. To understand these two operators one has to
know more about detectors but here they are just given. The operators ĉ† and ĉ are the creation and
annihilation operators for a photon. (A click here means at least on click.)

The apparatus is always on and always interrogating the system where time is split into equal intervals
of length dt, and every dt the apparatus makes a measurement with the result clicks or no clicks. As
discussed above there are the two cases of non-selective and selective evolution, and here the non-selective
evolution from ρ(t) to ρ(t+ dt) with

ρ(t+ dt) = M0(dt) ρ(t)M†0 (dt) +M1(dt) ρ(t)M†1 (dt)

is considered. Substituting the definitions for M0(dt) and M1(dt) gives

ρ(t+ dt) =

[
I−

(
R̂
2 + i Ĥ

)
dt
]
ρ(t)

[
I−

(
R̂
2 − i Ĥ

)
dt
]
P0(dt)

P0(dt)
+
dt ĉ ρ(t) ĉ† P1(dt)

P1(dt)

=

[
I−

(
R̂

2
+ i Ĥ

)
dt

]
ρ(t)

[
I−

(
R̂

2
− i Ĥ

)
dt

]
+ dt ĉ ρ(t) ĉ†

where P0(dt) = tr
(
M†0 (dt)M0(dt) ρ(t)

)
and P1(dt) = tr

(
M†1 (dt)M1(dt) ρ(t)

)
are the probabilities added

for the sake of the physical picture. This gives

ρ(t+ dt) = ρ(t)−
(
R̂

2
+ i Ĥ

)
ρ(t) dt− ρ(t)

(
R̂

2
− i Ĥ

)
dt+ dt ĉ ρ(t) ĉ† +O(dt2)

≈ ρ(t)− 1

2

{
ĉ†ĉ, ρ(t)

}
dt− i

[
Ĥ, ρ(t)

]
dt+ ĉ ρ(t) ĉ† dt

expanded to order O(dt). It has the expected form of a Lindblad equation.

The selective evolution is interesting if one has an apparatus that counts clicks or no clicks and delivers a
measurement record. To understand the selective evolution one has to know the probabilities of at least
one click and of no click

P1(dt) = tr
(
ĉ†ĉ ρ

)
· dt P0(dt) = 1− P1(dt)

where P1(dt) is called here infinitesimal in the sense that it is arbitrarily small but finite. Therefore the
probability P0(dt) = 1 − O(dt) is almost one. The probability P1(dt) is proportional to the size of the
time slots dt. In probability theory this is called a Poisson process. The system changes as

ρ(t)

{
no click−−−−−→ ?
click−−−−−→ ?

|ψ(t)〉

{
no click−−−−−→ |ψ0(t+ dt)〉
click−−−−−→ |ψ1(t+ dt)〉
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restricted to pure states |ψ(t)〉 because if the system is in a pure state before the measurement it is also
in a pure state afterwards. This gives

|ψ0(t+ dt)〉 =
M0(dt) |ψ(dt)〉√

〈ψ |M†0 (dt)M0(dt) |ψ〉
=

{
I− dt

[
iĤ − 1

2
ĉ†ĉ− 1

2
〈ĉ†ĉ〉

]}
|ψ(t)〉+O(dt)

|ψ1(t+ dt)〉 =
M1(dt) |ψ(dt)〉√

〈ψ |M†1 (dt)M1(dt) |ψ〉
=
ĉ |ψ(t)〉√
〈ĉ†ĉ〉

where |ψ0(t+ dt)〉 is Taylor expanded. The state after the no-click event is the same as before such that
|ψ0(t+ dt)〉 = I |ψ(t)〉 but one has gained information because one knows now that there was no photon,
and this results in additional terms.

A click is called a quantum jump. One defines a random variable N(t) for the number of jumps in the
time window [0, t]. The change dN(t) is either zero or one, and two clicks at the same time are impossible
because the measurement is dichotomic and can only return yes or no for at least one click or no click.
This gives

dN(t)2 = dN(t) E[dN(t)] = P1(dt)

with the average E[dN(t)] being an value between 0 and 1. This average can also be written as

P1(dt) = dt tr
(
ĉ†ĉ ρ

)
= dt 〈ψ(t) | ĉ†ĉ |ψ(t)〉

since this is a selective evolution.

One can put all together and ask what is the change in the pure state and this is also a random variable

d |ψ(t)〉 = |ψ(t+ dt)〉 − |ψ(t)〉

=

[
dN(t)

(
ĉ√
〈ĉ†ĉ〉 (t)

− 1

)
+
[
1− dN(t)

]
dt

(
〈ĉ†ĉ〉 (t)

2
− ĉ†ĉ

2
− iĤ

)]
|ψ(t)〉

(2.66)

since it is not deterministic. It is |ψ0(t)〉 with some probability and |ψ1(t)〉 with some probability. (One
can think of Brownian motion to get an idea of what this random variable is.) Each time one runs the
experiment one gets a different trajectory. If dN(t) is not a random variable such that dN(t)2 = dN(t) = 0
then the selective conditional evolution would be deterministic. One actually gets in this case unitary
evolution because 〈ĉ†ĉ〉 (t) and ĉ†ĉ would be zero.

Only the case that dN(t) · dt is an order smaller than dt is explored, and equation (2.66) becomes

d |ψ(t)〉 =

[
dN(t)

(
ĉ√
〈ĉ†ĉ〉 (t)

− 1

)
+ dt

(
〈ĉ†ĉ〉 (t)

2
− ĉ†ĉ

2
− iĤ

)]
|ψ(t)〉

by setting [1 − dN(t)]dt = dt. With the definitions π(t) = |ψ〉 〈ψ| (a random projection depending on
N(t)) and ρ(t) = E[π(t)] (expectation value ignoring the measurement record) one gets

dπ(t) = |dψ〉 〈ψ|+ |ψ〉 〈dψ|+ |dψ〉 〈dψ|+ ... =
{
dN G(ĉ)− dtH

[
iĤ + 1

2 ĉ
†ĉ
]}

π(t)

where G(ĉ)X = ĉXĉ†

tr(Xĉ†ĉ)
and H(ĉ)X = ĉX + Xĉ† − tr

(
ĉX +Xĉ†

)
X are superoperators. The result

becomes

dρ = E[dt] = i dt[Ĥ, ρ] +D(ĉ)ρ

using dN dt is smaller than dt and E[dN f(π)] = dtE[tr
(
πĉ†ĉ

)
f(π)]. Thus, a typical solution of N(t) is

a staircase that grows by 1 at times tj where a click occurred. The evolution of |ψ(t)〉 is |ψ(0)〉 with

T e
∫ tj
tj−1

(−iĤ− 1
2 ĉ
†ĉ− 1

2 〈ĉ
†ĉ〉)ds

between the clicks and with quantum jumps ĉ√
〈ĉ†ĉ〉

at the clicks.
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