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Abstract

Gravitation is the earliest recognized fundamental force of nature and found in Einstein’s General
Relativity so far its last complete theory despite the fact that General Relativity describing gravitation
and Quantum Mechanics plus the Standard Model of Particle Physics describing the other three
fundamental forces are still incompatible. Alex Flournoy from the Colorado School of Mines held
lectures in 2019 covering 27 topics. His lectures were available on YouTube at the time this transcript
has been assembled and may still be available today as “General Relativity (2019)” in 29 separate
videos (two covering one topic and one from an earlier year). The first 18 lectures cover the theoretical
side with manifolds, tensors and curvature, and the remaining 11 lectures touch on the practical side
with the Schwarzschild solution, black holes and cosmology. A thorough basis of modern physics
including classical mechanics and Special Relativity is required or, at least, very helpful.

1 Introduction

1.1 The Place of General Relativity in Physics

General Relativity addresses some of the big questions in physics such as cosmology and the nature of
spacetime. It is one half of Quantum Gravity which is probably the most perplexing issue confronting
theoretical physics. Despite its name it is, however, not a generalization of Special Relativity.

Correspondence principles show how one can move from a more powerful theory to a more limited theory
which is easier to work with. The most limited mechanics is Newton’s approach.

The following frameworks1 of physics are somehow related to General Relativity:

• Newtonian Mechanics is the oldest and most limited framework. It is used for particles and fields
restricted to S � ~ and v � c.

• Quantum Mechanics is used for particles and fields restricted to v � c. According to Bohr, Quan-
tum Mechanics is true for large systems but the discreteness (spacing) is relatively small. A simple
harmonic oscillator, for example, has energy levels En = (n+ 1

2 )~ω where ω is the frequency of the
oscillator, while the classical energy is E = 1

2mω
2A where m is the mass and A the amplitude of

the oscillation. For a big classical oscillator with m = 1 kg and A = 1 m oscillating relatively slowly
with ω = 1 Hz it gives n = 4.7 · 1023 interpreted quantum-mechanically. With ∆E

E ≈ 0 the energy
spectrum looks continuous.
Another aspect is that classical behavior arises for many particles due to decoherence of wavefunc-
tions between many degrees of freedom. (Exceptions are condensates.)
Feynman brought Quantum Mechanics into the form of path integrals

e
i
~S S =

∫
Ldt L = Ekin − Epot

which is based on the so-called Lagrangian L.

1A framework is used for describing the evolution of a system, and a theory applies a chosen framework to a physical
context. (For details see Script Introduction to the Standard Model of Particle Physics – Part 1.)
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• Special Relativity is used for particles and fields restricted to S � ~. It replaces Galilean relativity.
The difference between Newtonian Mechanics and Special Relativity is best explained through
relativistic addition of velocities

v3 =
v1 + v2

1 +
v1v2

c2

which reduces to simple addition of velocities v3 = v1 + v2 for v � c.
• Quantum Field Theory is only used for fields while particles are just small fluctuations. Quantum

Mechanics and Special Relativity are at odds with each other because Quantum Mechanics requires
wavefunction normalization to conserve particle number and Special Relativity for particles allows
creation and annihilation leading to changing particle number. One could combine them without
fields, but it would be ugly and does not incorporate effects such as the Higgs mechanism.

In other words, Quantum Mechanics extends Newtonian mechanics to small systems, Special Relativity
extends Newtonian mechanics to fast systems, and both are extended by Quantum Field Theory to small
and fast systems.

For a theory one needs a framework plus degrees of freedom and some interactions. General Relativity
is a theory and not a framework. It is the theory of the gravitational interaction. Thus there is a
correspondence principle relating General Relativity to Special Relativity, and General Relativity is a
generalization of Newtonian gravity needed when the ratio of mass m to characteristic length R and the
ratio of the speed of light c squared to the gravitational constant G satisfies the inequality m/R ≥ c2/G.
Special Relativity is one particular solution of General Relativity for a flat spacetime with no gravity
acting at all. General Relativity was the first theory in physics starting with an unknown spacetime and
not with a predefined spacetime. Another beautiful connection between Special and General Relativity
is that one can start from Special Relativity, use a gauge principle similar to the ones in Particle Physics
and ends up with General Relativity.

1.2 Fields and Test Particles in General Relativity

To relate General Relativity to something known, electrodynamics is used. Maxwell’s equations

~∇ · ~E =
ρ

ε0
~∇× ~B = µ0

~j + µ0ε0
∂ ~E

∂t
~∇× ~E = −∂

~B

∂t
~∇ · ~B = 0

tell how sources (ρ, ~j) create fields ( ~E, ~B) with some topological constraints. The first two equations are
the equations of motion of the electromagnetic fields, while the second two are the Bianchi identity and
are geometric conditions.

One half of electromagnetism are Maxwell’s equation telling how sources create fields, and the other half
is how fields affect particles. The equation for the Lorentz force

~FEM = q( ~E + ~v × ~B) ~F = m~a

with Newton’s law tells how particles react to the electromagnetic fields.

There is this split used a lot in physics where one uses big things creating backgrounds and then one uses
small things as test particles to see what they do. A proton may be the massive thing which does not
get influenced noticeable, and an electron may be the light thing placed in the electromagnetic field of
the proton.

General Relativity mirrors this split. Einstein’s equation (corresponding to Maxwell’s equations) tells
how sources create gravitational fields respectively curvature and represents one half of the theory. The
geodesic equation (corresponding to the Lorentz force) tells how a test particle responds to curvature and
represents the second half. The earth moving around the sun or a satellite moving around the earth are
examples for test particles. (The gravitational field is not a field in the sense of the Newtonian gravity,
but in describing the curvature of a spacetime the metric field is used which is perhaps the single most
important element of General Relativity.) The metric field describes the geometry of spacetime including
its curvature. One solves Einstein’s equation to get the geometry of spacetime and looks for the extremal
path (largest or smallest) by solving the geodesic equation.
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1.3 Relativity

Relativity means that the laws of physics should take the same form to all observers in inertial frames.
There are three symmetries of space and time which are relevant:

• Isotropy of space: If one takes the laboratory and rotates it, nothing should change.
• Homogeneity of space: If one takes the laboratory and translates it, nothing should change.
• Homogeneity of time: The laws of physics yesterday are the same as today and tomorrow.

The Galilean relativity assumes an absolute time everybody agrees on, and Einstein’s relativity assumes
that the speed of light is what everybody agrees on, but absolute time and constancy of speed of light are
incompatible such that independent space and time have to be replaced by spacetime, and these three
symmetries have to be replaced by

• Homogeneity of spacetime
• Isotropy of spacetime

because space and time are no longer separate entities. (Actually the fact that the speed of light is
constant is because only light was known as massless at that time, but the constant speed is the one of
any massless particle.)

The isotropy in spacetime is an important symmetry because much of Special Relativity is just rotations
in four dimensions but there are other symmetries in physics. Symmetry is an incredibly powerful tool
to help simplify calculations, and symmetry means that the action S =

∫
Ldt in classical mechanics

or S =
∫
L d4x relativistically (where L is a Lagrangian and L is a Lagrangian density) looks in both

situations the same. A translation or a rotation in space or spacetime does not change the action S. A
consequence of the invariance of the action is covariance of the equation of motion.

1.4 Symmetry, Groups and Representations

Symmetries can be static or dynamical. (A dynamical symmetry is one that leaves a Lagrangian un-
changed.) They can also be global or local, discrete or continuous, finite or infinite, compact or non-
compact, internal or spacetime. (If one coordinatize spacetime, then spacetime transformations also
change coordinates while internal transformations do nothing to the coordinates.) Special Relativity is
associated with spacetime symmetries, while the strong, weak and electromagnetic forces are associated
with internal symmetries. To describe symmetry transformations mathematically, groups and represen-
tations are used2.

A group is a collection of elements G = {A,B, ...} with a composition • that satisfies:

1. Closure: If A,B ∈ G then A •B ∈ G
2. Identity: There is some I ∈ G such that I •A = A for any A ∈ G
3. Inverse: For any A ∈ G there is an A−1 ∈ G such that A−1 •A = I
4. Associativity: A • (B • C) = (A •B) • C

The axioms identity and inverse will be very important in building invariants. A group with commu-
tativity A • B = B • A in addition to the above axioms is called abelian, but many groups needed in
physics do normally not commute and are therefore non-abelian. If a subset of G satisfies all the above
four axions then it is called a subgroup. Not all sets G with a composition • have an identity element.
The cross product of vectors in three dimensions, for example, has no identity because the non-zero cross
product is always orthogonal to any element multiplied and only the zero vector is orthogonal to any
vector including itself.

Groups are often abstractly defined objects such as Z2 = {I, A} which is specified through I•A = A•I = A
and I •I = A•A = I. (Finite groups can be defined by their multiplication table.) An abstract group can
have many different concrete representations. Rotations in a plane about angles which are multiples of
180◦, addition of odd and even numbers, and multiplication of 1 and −1 are examples of representations
of Z2. Representations show how the group acts on things. In physics one works with representations of
groups. Faithful representations give all information about a group.

2For a more detailed treatment see Script Introduction to the Standard Model of Particle Physics – Part 1.
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Squares with labeled corners A, B, C, D, as an example, build a faithful rep-
resentation of clockwise rotations about an angle which is a multiple of 90◦. If
opposite corners are labeled with the same letter then rotations about 180◦ are
no longer distinguishable, and squares with opposite corners labeled the same
build therefore not a faithful representation of the group of rotations about 90◦

in a plane. Unfaithful representations are also called degenerate. The most
degenerate representation is the so-called identity representation where all four corners are labeled with
the same letter A. One might argue that the identity representation is not very useful, but scalars, for
example, are invariant under rotations and build therefore a representation with only one value. Also
other objects which are not affected by a specific transformation are represented this way. The electron,
for example, is not influenced by the strong force and is therefore invariant under rotations in color space.

In physics one often works with representations where the transformations are linear operators represented
by matrices. This is, however, just a representation. In the example of the group of rotations by multiples
of 90◦ the definitions

S1 =


1
0
0
0

 S2 =


0
1
0
0

 S3 =


0
0
1
0

 S4 =


0
0
0
1



R0◦ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 R90◦ =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 R180◦ =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 R270◦ =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


can be used where a column matrix is assigned to each of the four squares and a 4 × 4 matrix as an
element of the group is assigned to each rotation. These matrices representing rotations behave as
expected under matrix multiplication such that R90◦R180◦ = R270◦ and so on. This is a faithful four-
dimensional representation, but there are representations of this group with other dimensionalities. The
smallest dimension giving a faithful representation is one where the group elements are complex numbers
eiθ with θ ∈ {0, π2 , π,

3π
2 }.

1.5 Dual Representation, Invariance and Metric

Knowing how elements of a representation transform under an element of the group does not mean
that one also knows how to build an invariant. A possible idea is that combining two objects which
transform oppositely may give an invariant. That is exactly the correct way because the transformation
combined with the opposite transformation cancel. For any matrix representation r one can form the dual
representation r̃ defined such that if A ∈ G then r̃ → (A−1)T r̃ follows from r → Ar. (This is analogous
to the dot product ~v · ~w which results in a number. The transpose is reflected since ~v is a row vector and
~w is a column vector.) It follows because of

r̃T r →
(
(A−1)T r̃

)T
Ar = r̃T

(
(A−1)T

)T
Ar = r̃TA−1Ar = r̃T r

that r̃T r is invariant.

To find the dual representation r̃ for a given representation r one can use the metric g which is a mapping
from an element of a representation r to a corresponding element of the dual representation r̃ by r̃ = gr.
The metric is always a symmetric matrix such that g = gT . It follows from

r̃T r = (gr)T r = rT gT r = rT gr rT gr → (Ar)T gAr = rTAT gAr = rT gr

for any A ∈ G that
AT gA = g (1.1)

is the condition for rT gr to be invariant under the transformations r → Ar.

Thus, one can use this property in two directions. On one side, given the group G with all the trans-
formations A, one can find the metric g using (1.1) and the dual representation with the invariants r̃T r.
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On the other side, given a representation r and a metric g, one can use the condition (1.1) to find the
transformations A which leave rT gr invariant. The second way is typically how one encounters symme-
tries in physics. One starts with stuff such as particles, fields, and other dynamical quantities which form
a representation and finds using the metric g a set of transformations that are symmetries of r̃T r. This
way will be used below to uncover Special Relativity.

Before this is done, the first way is used to study rotations in three dimensions. The rotations are passive
and thus transform coordinates and not objects. The corresponding group G = {Rx(θ), Ry(φ), Rz(ψ)} is
compact, continuous and non-abelian.

Given two objects in space whose positions are specified in a given rectangular coordinate system by
(xA, yA, zA) and (xB , yB , zB), the distance between them should be invariant under a change of coordi-
nates through a rotation. The distance is expressed as

∆s =
√

(xA − xB)2 + (yA − yB)2 + (zA − zB)2 =
√

∆x2 + ∆y2 + ∆z2

between these two positions. This can be interpreted as the dot product of a row vector and a column
vector both with the coordinates ∆x, ∆y, ∆z.

If a rotation is represented by a linear operator R then∆x
∆y
∆z

→
∆x′

∆y′

∆z′

 = R

∆x
∆y
∆z

 ⇒ (∆x,∆y,∆z)→ (∆x′,∆y′,∆z′) =

R
∆x

∆y
∆z

T

and

∆s2 = (∆x,∆y,∆z)

∆x
∆y
∆z

 = (∆x′,∆y′,∆z′)

∆x′

∆y′

∆z′

 =

R
∆x

∆y
∆z

T R
∆x

∆y
∆z


= (∆x,∆y,∆z)RTR

∆x
∆y
∆z


such that RTR = I is the condition for ∆s2 to be invariant. Comparing to (1.1) shows that RT IR = I
and g = I. The metric and the dot product are therefore

g =

1 0 0
0 1 0
0 0 1

 ∆s2 = (∆x′,∆y′,∆z′)

1 0 0
0 1 0
0 0 1

∆x
∆y
∆z


in the case of rotations in the three-dimensional Euclidean space.

Now one can understand why g is called a metric. For spacetime transformations it plays a crucial role in
defining distance. In fact it will help tremendously to think of coordinates as labels distinguishing points
in space (or spacetime) with no intrinsic notion of distance. The distance is encoded in the metric.

In the case of polar coordinates r, θ in two dimensions the infinitesimal distance is

ds2 = dr2 + r2dθ2 = (dr, dθ)

(
1 0
0 r2

)(
dr
dθ

)
and not, as one might expect, ds2 = dr2 + dθ2.

2 Special Relativity

2.1 Basic Principle and Minkowski Metric

The premise of Special Relativity is that physical laws should not change under transformations contin-
uously connected to the identity which preserve spacetime intervals ∆s2 = −c2∆t2 + ∆x2 + ∆y2 + ∆z2.
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This immediately implies invariance under translations t→ t′ = t+ ∆t, x→ x′ = x+ ∆x and so on. The
metric and the formula for spacetime intervals are

η =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ∆s2 = (c∆t,∆x,∆y,∆z)


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



c∆t
∆x
∆y
∆z

 (2.1)

where η is the specific metric of Minkowski space in Cartesian coordinates. Any transformation Λ that
satisfies ΛT ηΛ = η corresponding to (1.1) will leave the interval invariant. Thus basically everything in
Special Relativity including the constant speed of light follows from this equation.

2.2 Lorentz Transformations

There is obviously an infinite number of transformations satisfying ΛT ηΛ = η because it is a continuous
group, but similarly to rotations in the three-dimensional space one should be able to organize them into a
small set of independent transformations each labeled by a continuous parameter. However the rotations
in the three-dimensional space should not be interpreted as a rotation about an axis but as a rotation in
a plane which is also true in higher dimensions. The rotation Rx(θ) is therefore the rotationRyz(θ) and
analogously for the other two axes. In three dimensions there is a one-to-one mapping between a plane
and the direction of a normal vector, but this is no longer the case in four dimensions. The number of
planes in a space with N dimensions is(

N

2

)
=

N !

(N − 2)! 2!
=

1

2
N(N − 1)

such that there are three planes in three dimensions and six planes in four dimensions.

One has to expect six independent transformations Rxy, Ryz, Rzx, Rtx, Rty, Rtz each labeled with a
continuous parameter. The first three Rxy, Ryz, Rzx are just rotations in space and do not do anything
to time t. The other three Rtx, Rty, Rtz are called boosts. Two of the corresponding transformations Λ
as examples of Lorentz transformations are

Λxy(θ) =


1 0 0 0
0 cos(θ) sin(θ) 0
0 − sin(θ) cos(θ) 0
0 0 0 1

 Λtx(φ) =


cosh(φ) − sinh(φ) 0 0
− sinh(φ) cosh(φ) 0 0

0 0 1 0
0 0 0 1

 (2.2)

corresponding to Rxy and Rtx. One can easily check that both matrices satisfy ΛT ηΛ = η because

sin(θ)
2

+ cos(θ)
2

= 1 and cosh(φ)
2− sinh(φ)

2
= 1. The matrix for Λxy looks familiar because it is just an

ordinary rotation which leaves the z and t coordinates untouched. The matrix for Λtx(φ) however looks
strange and has to be brought into a known form first.

Consider two frames S and S′ where S′ moves with respect to frame S in the x-direction
with constant velocity v. From

c∆t
∆x
∆y
∆z

→

c∆t′

∆x′

∆y′

∆z′

 =


cosh(φ) − sinh(φ) 0 0
− sinh(φ) cosh(φ) 0 0

0 0 1 0
0 0 0 1



c∆t
∆x
∆y
∆z

 =


cosh(φ) c∆t− sinh(φ) ∆x
− sinh(φ) c∆t+ cosh(φ) ∆x

∆y
∆z


and the fact that the origin O in S′ is at rest in S′ follows that ∆x′ = 0 = − sinh(φ) c∆t + cosh(φ) ∆x
or ∆x

∆t = c tanh(φ). In S where the coordinates x and t are used, the origin O of S′ moves with vx = v

such that ∆x
∆t = c tanh(φ) = v or tanh(φ) = v

c . It follows

cosh(φ) =
1√

1− v2

c2

sinh(φ) =
1√

1− v2

c2

v

c
because cosh(φ) =

1√
1− tanh(φ)

2

such that sinh(φ) and cosh(φ) can be replaced by expressions in v and c.
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The transformation Λtx(φ) can now be written as

Λtx(φ) =


γ −γ vc 0 0
−γ vc γ 0 0

0 0 1 0
0 0 0 1



c∆t
∆x
∆y
∆z

→

c∆t′

∆x′

∆y′

∆z′

 = Λtx(φ)


c∆t
∆x
∆y
∆z

 =


γ(c∆t− v

c∆x)
γ(∆x− v∆t)

∆y
∆z

 (2.3)

bringing the right side of (2.2) into a better known form where the quantity

γ =
1√

1− v2

c2

(2.4)

is defined as usual to simplify the formulas.

If frame S′ moves with respect to frame S in the direction of −x with velocity v and
an object in frame S moves with velocity u in the direction of x, then similar steps as
above with v → −v give

∆x′

∆t′
=

γ∆x+ γv∆t

γ∆t+ γ v
c2 ∆x

=
γ∆x+ γv∆t

γ∆t+ γ v
c2 ∆x

1
∆t
1

∆t

=
γ∆x

∆t + γv

γ + γ v
c2

∆x
∆t

=
∆x
∆t + v

1 + v
c2

∆x
∆t

but ∆x
∆t = u and ∆x′

∆t′ = u′ such that

u′ =
v + u

1 + vu
c2

=
∆x′

∆t′
(2.5)

which is the velocity addition formula of Special Relativity.

Time dilatation and length contraction are often introduced as the important properties of Special Rel-
ativity looking at time and space separately. However, it is better to think in terms of four dimensions
where the quantity ∆s2 = −c2∆t2 + ∆x2 + ∆y2 + ∆z2 is invariant and does therefore not get changed
by Lorentz transformations.

2.3 Orthogonal Groups

To do physics in a four-dimensional space alone does not make it Special Relativity. One can use the
4× 4 identity matrix as the metric and call one coordinate t, but that does not give three rotations and
three boosts but six rotations because this is not Minkowski space M4 but Euclidean space R4. The
metric η is important with the fact that the three spacial coordinates and the one temporal coordinate
get different signs. Two separate metrics one with a 1 in the first diagonal element and 0 in the others
and the other one with a 0 in the first diagonal element and 1 in the others is called an R3 bundle over
R1 and corresponds to the Galilean spacetime where space and time are independent and which also has
three boosts and three rotations.

Rotations R in the three-dimensional Euclidean space R3 satisfy RTR = I or RT IR = I which is an
orthogonality condition. The group of transformations in R3 with RTR = I represented by matrices is
called O(3). These matrices are called orthogonal, and they build together an orthogonal group.

Lorentz transformations Λ in the four-dimensional Minkowski space M4 satisfy ΛT ηΛ = η which is also a
kind of orthogonality condition but it is not O(4) because M4 is not R4. It is called O(1,3) because one
coordinate is different than the others, and the dimension is called 1 + 3 to distinguish it from 4.

The orthogonal groups O(3) and O(1,3) are too wide, because one would like to restrict them to the trans-
formations that are continuously connected to the identity. This allows to build up any transformation
by starting with the identity and applying many tiny transformations. This property of transformations
has two advantages. On one hand it allows to do calculus with the transformations and eventually leads
to Lie algebra structures, and on the other hand these types of transformations give rise to conserved
quantities to be studied later.

Rotations or Lorentz transformations with only non-zero elements in the diagonal and where these diago-
nal elements are only +1 or −1 can either be ordinary rotations respectively Lorentz transformations if it
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has an even number of −1 or can be a parity transformation if it has an odd number of −1. If only one di-
agonal element is −1, then the corresponding coordinate is reflected, and that is a discrete transformation
which is not continuously connected to the identity but satisfies the orthogonality condition.

To eliminate parity transformations the condition is det(R) = 1 for rotations R and det(Λ) = 1 for Lorentz
transformations Λ. The determinant of a rotation R in any dimension can be ±1 because det

(
RTR

)
=

det
(
RT
)

det(R) = det(R)
2

and det(I) = 1. Similarly, the determinant of a Lorentz transformation Λ

can be ±1 because det
(
ΛT ηΛ

)
= det

(
ΛT
)

det(η) det(Λ) = −det(Λ)
2

and det(η) = −1. If the group
elements with determinate −1 are eliminated the orthogonal group becomes a special orthogonal group
which means that O(3) becomes SO(3) and O(1,3) becomes SO(1,3).

There is still one small issue with SO(1,3) in particular. One can prove that the upper left term of Λ
which is Λ00 must satisfy Λ2

00 ≥ 1. This condition is satisfied by Λ00 ≥ 1 and Λ00 ≤ −1. Since Λ00 = +1
for the identity, one has to exclude transformations Λ with Λ00 ≤ −1 which reverse time t. The resulting
group of transformations is called the proper orthochronous Lorentz group denoted by SO(1,3)↑.

The complete symmetry group is ISO(1,3)↑ = P 4 n SO(1,3)↑ with 4 + 3 + 3 generators and is called
Poincaré group. The group P 4 of translations contains the translations in space as well as in time. (The
Poincaré group is a semidirect product indicated by n because P 4 is a normal group while SO(1,3)↑ is
not.)

The algebra of SO(1,3)↑ is [R,R] = R, [B,B] = R, [R,B] = B where R is a rotation and B a boost.
(The commutator [A,B] is defined as [A,B] = AB −BA and is therefore zero if A and B commute such
that AB = BA.) This means that rotations build a subgroup of SO(1,3)↑, but boost do not.

Any two inertial observers in Special Relativity can be related by one of these transformations. Thus,
Special Relativity is defined by the invariance of physical laws under the Lorentz transformations. To
ensure that SO(1,3)↑ is a good symmetry of Special Relativity, one must always work with objects that
transform in a well-defined way, and this also makes it easier. Any three-dimensional vector or scalar
must be promoted to a four-dimensional vector or scalar with respect to SO(1,3)↑. Examples are ~p→ Pµ

and t→ τ .

2.4 Spacetime Diagrams

When one considers coordinate transformations, it is often useful to draw both the old and
the new axes together to visualize what has changed. The matrix multiplication(

x
y

)
→
(
x′

y′

)
=

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
x
y

)
=

(
x cos(θ) + y sin(θ)
−x sin(θ) + y cos(θ)

)
for a rotation in R2 results in the two equations x′ = x cos(θ) + y sin(θ) and y′ = −x sin(θ) + y cos(θ).

One can start instead from the old coordinate system and figure out where the new axes are.
The x′-axis is where y′ = 0 = −x sin(θ) + y cos(θ) ⇒ y = x tan(θ). Similarly the y′-axis is
where x′ = 0 = x cos(θ) + y sin(θ)⇒ x = −y cot(θ). (Note that the slopes multiply to −1 as
they should for orthogonal lines.)

The above equations build a system of two equations with the two unknowns x and y∣∣∣∣−x sin(θ) + y cos(θ) = 0
x cos(θ) + y sin(θ) = 0

∣∣∣∣
and which is linear. However, one is not interested in the solution (the origin of the coordinate system)
but the lines they represent which are the x′-axis and the y′-axis.

For Lorentz boosts along the x-axis (or a rotation in the tx-plane) an analog procedure is used.
The matrix multiplication(

ct
x

)
→
(
ct′

x′

)
=

(
cosh(φ) − sinh(φ)
− sinh(φ) cosh(φ)

)(
ct
x

)
=

(
ct cosh(φ)− x sinh(φ)
−ct sinh(φ) + x cosh(φ)

)
for the rotation in M2 leads to ct′ = ct cosh(φ)− x sinh(φ) and x′ = −ct sinh(φ) + x cosh(φ) which are
also two linear equations.
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Similarly to the rotation in R2, the ct′-axis is where x′ = 0 = −ct sinh(φ) + x cosh(φ),
and the x′-axis is where ct′ = 0 = ct cosh(φ) − x sinh(φ). This leads to ct = x coth(φ)
for the ct′-axis and ct = x tanh(φ) for the x′-axis. The two axes ct′ and x′ are actually
orthogonal to each other but drawing them in R2 instead of M2 cannot show this. This is
sometimes called the scissoring effect of a boost.

One important feature of this is how to identify lines of constant time or position. Time
t′ is constant on lines parallel to the x′-axis, and similarly, position x′ is constant on lines
parallel to the ct′-axis. This means mathematically that ct = x tanh(φ) + constant for
constant time t′ because ct′ = constant = ct cosh(φ) − x sinh(φ). Thus, lines of constant
time and position in the coordinate system ct′ and x′ are not perpendicular to each other
similar to the axes.

If two events A and B are simultaneous in the frame S with the coordinates ct and x, they
lie on a line parallel to the x-axis. In the frame S′ with the coordinates ct′ and x′ they do
however not lie on the same line parallel to the x′-axis. This is the loss of absolute time in
Special Relativity as compared to Galilean relativity. Whether two events happen at the
same time depends therefore on the frame with the observer. In one frame A may precede
B and in another frame B may precede A.

2.5 Causal Structure

In physics the notion of cause and effect are crucial. In Galilean relativity causality is encoded in the
statement that causes must precede effects and that can be done consistently because two simultaneous
events in absolute time are always simultaneous. However, when it is no longer clear what the temporal
relations are between two events then causality has to be carefully reevaluated. In Special Relativity the
causal structure has the form of a cone and is called the light cone.

Each event in spacetime has a past and a future light cone associated with it
where an event is just a point in spacetime. The cone is the set of points with
x2 + y2 + z2 = c2t2 whose intersection with the plane of ct and x is the two
lines at ±45◦. The cones for event A are shown in the figure. Event A can only
influence future events with less than the speed of light such that the surfaces
of the cones are connected to A by signals moving at the speed of light c. This
means that A can only influence events in the future light cone, and that it can
only have been influenced by events in the past light cone. The causal structure
makes therefore that A could cause C, and D could cause A and C, but A could
not cause B.

The light cones replace the causal structure of Galilean relativity with absolute time. If the event A is
the birth of a person, then this person can only influence (and experience) events in his or her future
light cone and have been influenced by events in his or her past light cone. Whatever has happened in
the universe outside this past light cone will be a secret forever for this person.

3 The Mathematics of Tensors

3.1 Index Notation

So far matrices have been used to represent vectors, transformations and the metric. One advantage of
matrices is that one can use them to represent things that do not commute, but they have at least three
disadvantages. Because they do not commute, one has to be careful about order when writing expressions
with matrices. They can become very big such that writing them out explicitly may be a problem. The
most important disadvantage is however that there are objects and operations one cannot represent by
matrices and matrix multiplication. Index notation3 will remove these disadvantages and keep all the
advantages of matrices such as the possibility to represent non-commuting objects.

3Computers use internally index notation when they process matrices.
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The example of a rotation about θ in R2 is used to introduce index notation.
The rotation is (

x1

x2

)
→
(
x1′

x2′

)
=

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
x1

x2

)
written using matrix multiplication. When using the notation(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
=

(
Λ1′

1 Λ1′

2

Λ2′

1 Λ2′

2

)
instead, one can write

xi → xi
′

= Λi
′

j x
j

using the Einstein summation convention which demands that repeated indices are summed.

Several important points to note:

1. The number of dimensions does not matter because xi → xi
′

= Λi
′

j x
j does not specify the dimension

which has to be known from the context.
2. One can also write xi → xi

′
= xj Λi

′

j because order does not matter while it does matter for
matrices.

3. One knows immediately how to evaluate something like MijkN
ijk given the elements of Mijk and

N ijk even though one cannot represent this in terms of matrices.
4. Repeated indices always come in upper (also called contravariant) and lower (also called covariant)

index pairs as, for example, in Λi
′

j x
j .

5. In the four dimensions of spacetime greek indices such as µ, ν and λ are used. They take values 0,
1, 2, 3 corresponding to (ct, x, y, z). When talking about space alone, latin indices such as i and j
are used.

6. In some cases objects will come with one primed and one unprimed index as in Tµ
′

νX
ν indicating

a transformation from the unprimed to the primed coordinate system. Any object other than a
coordinate transformation should only have either unprimed or primed indices.

7. In cases where objects in index notation can be represented by matrices and one wants to represent
them by matrices, one has to be careful with the order. The rule to go from index notation to
matrix expressions is that the repeated sum indices must be immediately adjacent. Thus, Xν Tµ

′

ν ,
for example, must first be reordered to Tµ

′

νX
ν .

3.2 Vectors and Tangent Spaces

Vectors are elements of some vector space with the corresponding axioms. Here a vector is always either
a vector in spacetime such as Xµ or a vector in space alone such as ∆~x or ~E. They correspond to physical
quantities with a magnitude and a direction. They have three important features:

1. The vector itself is invariant under coordinate changes. (The vector has different components in
different coordinate systems, but the actual physical quantity does not change.)

2. When one chooses coordinates, the vectors have components which satisfy a specific transformation
law. The vector is not just the components but the components together with the basis vectors,
and this combination is invariant. (The mathematical description changes but not the physical
quantity.)

3. Despite that vectors usually have been introduced in terms of entities connecting two positions in
space, vectors do not in general exist within a space or spacetime. This is because the usual rules
for vector manipulation in linear algebra requires these objects to exist in flat spaces but spaces
and spacetimes can be curved.

The last point leads to the question how one works with intrinsically flat objects in general
curved spaces. The sphere S2 embedded in R3 is a curved two-dimensional space. At each
point in the space a tangent space is defined as the set of tangent vectors to all curves
passing through that point. Vectors at each point in the space live in these tangent spaces.
In flat spaces all the tangent spaces are parallel, but in curved spaces they are not.

10



This has two important consequences:

a) One cannot freely move vectors around the space since in general the tangent spaces change.
b) Comparing vectors defined at two different points in a space will be tricky.

To uncover how vector components transform under coordinate changes, one can start with the partic-
ularly simple vector ds. The components of this vector are just coordinate differentials dXµ. Because
coordinates transform as Xµ → Xµ′ = Λµ

′

ν X
ν and the components of ds are little segments of coordi-

nates they must transform as dXµ → dXµ′ = Λµ
′

ν dX
ν . Thus, one knows how one particular kind of

vectors transforms, but one would like a rule for the transformation of the components of an arbitrary
vector.

A vector is invariant under coordinate transformation and only its components change. In the (orthonor-
mal) basis of ê(µ) the infinitesimal displacement is ds = dXµ ê(µ). If ds is invariant and the components

transform as dXµ → dXµ′ = Λµ
′

ν dX
ν , one can conclude

ds = dXµ ê(µ) → ds′ = dXµ′ ê(µ′) = ds

= Λµ
′

µ dX
µ ê(µ′) = Λµ

′

µ dX
µ Λλµ′ ê(λ) = Λλµ′ Λ

µ′

µ dX
µ ê(λ) = dXµ ê(µ)

guessing Λλµ′ ê(λ) as the transformation of the basis vectors based on indices. This indicates that

Λλµ′ Λ
µ′

ν = δλν

must be satisfied, and this obviously means Λ−1 Λ = I. (Note that Λµµ′ is the inverse and Λ µ′

µ the

transpose of Λµ
′

µ. Because ΛT ηΛ = η, one can conclude ΛT 6= Λ−1.)

Given the transformation properties of the basis vectors and the fact that vectors are invariant, the
general transformation laws are

V µ → V µ
′

= Λµ
′

ν V
ν ê(µ) → ê(µ′) = Λλµ′ ê(λ) Λλµ′Λ

µ′

ν = δλν (3.1)

for vector components V µ and basis vectors ê(µ). To figure out whether an object is really a vector, one
can check whether it has the correct transformation properties.

3.3 Dual Vectors and Cotangent Spaces

One can define dual vectors by three conditions:

1. Dual vectors are straight directed objects defined at a point in space and live in a cotangent space.
2. Dual vectors are invariant but given a coordinate system they can be expressed in terms of compo-

nents and dual basis vectors which do transform.
3. Dual vectors linearly absorb vectors and produce scalars.

To illustrate the last point, consider a dual vector ω and the linear combination a V + bW of two vectors.
The fact that the dual vector linearly absorbs this vector means ω(aV +bW ) = aω(V )+b ω(W ), and that
the result is a scalar. A scalar is an invariant whose explicit coordinate representation is also invariant.

As vectors are specified in a basis ê(µ) and with components V = V µ as V µ ê(µ), dual vectors are similarly

specified in a basis θ̂(µ) and with components ωµ as ω = ωµ θ̂
(µ). To define what it means that a dual

vector consumes a vector it is because of the linearity sufficient to define it as

θ̂(µ) ê(ν) = δµν (3.2)

for the basis vectors and the dual basis vectors. The transformation laws for vectors and dual vectors are

ê(µ) → ê(µ′) = Λµµ′ ê(µ) V µ → V µ
′

= Λµ
′

µ V
µ

θ̂(µ) → θ̂(µ′) = Λµ
′

µ θ̂
(µ) ωµ → ωµ′ = Λµµ′ ωµ

(3.3)

because δµν is a scalar and therefore invariant and the transformation properties of the basis vectors ê(ν)

are known.
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The meaning of ω(V ) becomes clear

ω(V ) = ωµ θ̂
(µ) V ν ê(ν) = ωµ V

ν θ̂(µ) ê(ν) = ωµ V
ν δµν = ωµ V

µ = ω0 V
0 + ω1 V

1 + ω2 V
2 + ω3 V

3 ∈ R

because of the linearity. This looks like a dot product between two vectors but is actually a combination
of a vector and a dual vector. The dot product in Rn is V ·W = δij V

iW j where δij is the metric on Rn.
For Special Reality the metric ηµν is used such that ηµνV

µW ν = VµW
µ. The rules are

V µ → Vµ = ηµν V
ν Vµ → V µ = ηµν Vν ηµν = (ηµν)−1 (3.4)

for turning vectors in dual vectors and vice versa in Special Relativity. Thus the metric raises and lowers
indices. Note that in Special Relativity ηµν = ηµν but this is not true in general. (In the following the

basis vectors ê(µ) and the dual basis vectors θ̂(µ) are dropped assuming that (3.2) is satisfied, and only
components will be used.)

3.4 Tensors

The following two properties describe tensors:

1. Tensors represent physical quantities that are invariant but when given as explicit coordinate rep-
resentation will typically have components that transform.

2. Tensors exist in flat tangent or cotangent spaces or tensor products of these at each point.

One can label tensors with (tangent,cotangent) classifying scalars as (0, 0), vectors as (1, 0), dual vectors
as (0, 1), the metric ηµν as (0, 2), the inverse metric ηµν as (2, 0) and so on. In general one could have
tensors of type (m,n) with m upper and n lower indices. The tensor Tκλµν , for example, is of type (1, 3)

and is actually fully specified T = Tκλµν ê(κ) ⊗ θ̂(λ) ⊗ θ̂(µ) ⊗ θ̂(ν).

In a formal way tensors can be defined as multi-linear maps from the space of vectors and dual vectors
into the real numbers4 or, mathematically, T (V, ..., V, ω, ..., ω) = scalar. This definition assumes a “well-
fed” tensor such as Tκλµν V

λ V µ V ν ωκ ∈ R with no “free” indices in contrast to a “starving” tensor such

as Tκλµν V
λ V µ = Fκν or an “over-fed” tensor such as Tκλµν V

λ V µ V ν V ξ ωκ = Gξ.

Another definition of a tensor states that a tensor is something that transforms like a tensor which is
kind of tautological but is still a good definition. The coordinate transformation of tensor components
is determined by their index structure. Scalars c, vectors V , dual vectors ω and higher-order tensors T
transform analogously to (3.3) as

c→ c′ = c V µ → V µ
′

= Λµ
′

µV
µ ωµ → ωµ′ = Λµµ′ωµ

Tµν → Tµ
′ν′ = Λµ

′

µΛν
′

νT
µν Tµν → Tµ

′

ν′ = Λµ
′

µΛνν′T
µ
ν Tµν → Tµ′ν′ = Λµµ′Λ

ν
ν′Tµν

and so on. (Note that in Λµ
′

µΛν
′

νT
µν the two transformations Λµ

′

µ and Λν
′

ν are the same transformation.
It would not make sense if one is a rotation and the other a boost, for example.)

A very special tensor is the metric ηµν . It provides the notion of distance because of ∆s2 = ηµν ∆Xµ ∆Xν ,
but it also takes vector indices to their corresponding dual vector indices as shown in (3.4). Also other
tensors may give scalars as in Tµν ∆Xµ ∆Xν = c or dual vectors as in Tµν V

ν = Wµ, but it is not the
distance nor the corresponding dual vector. In this sense the metric ηµν and the inverse metric ηµν are
special. Some other equations which are only true for the metric are

ηλµ η
µν = δ ν

λ ηκν ηλµ ηµν = ηκν ηνµ η
µλ = ηκν δ λ

ν = ηκλ ηµνη
µν = ηνµη

µν = δ ν
ν = 4

because the metric is a tensor and one can use it as any other tensor of the same order. The fact that
the metric is symmetric makes it easier to come clear with the indices.

Coordinates Xµ are not vectors (because only ∆Xµ is a vector) but they transform like vectors. The
question is how derivatives ∂

∂Xµ of coordinates transform. Because ∂
∂Xµ (Xν) = δ µ

ν is a number, ∂
∂Xµ

must transform oppositely of Xµ and ∂
∂Xµ usually written as ∂µ transforms as a dual vector.

4In Special and General Relativity numbers are always real numbers. In other fields of physics there can also be tensors
based on complex numbers.
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3.5 Tensor Equations

The physical world has no predetermined absolute coordinate system (inertial or otherwise) and truly
fundamental laws of physics should be built out of quantities which are at least invariant under transfor-
mations connecting inertial frames. This means that they should be built out of tensors.

Scalar equations are fine but limited. One would like to write equations like Aµν = Bµ CνλD
λ+Eµνκ Fκ.

Such equations in components are not invariant because they transform when the coordinates change.
However this is fine as long as the left-hand side of the equation transforms exactly the same way as the
right-hand side because one can insert all the basis vectors and dual basis vectors and then both sides
are invariant.

Tensors can also contain things like ∂µAν but index symmetries should also agree on both sides of the
equation. Given Fµν = ∂µAν − ∂νAµ then Fνµ must be −Fµν . As an example illustrating the use of
tensors, Maxwell’s equations

~∇× ~B − ∂t ~E = ~j ~∇ · ~E = ρ ~∇× ~E + ∂t ~B = 0 ~∇ · ~B = 0

can be used. Each vector product contains three equations such that these are eight equation in total.
While it is obvious that these equations are invariant under rotations, it is not clear that they are invariant
under boosts.

If one introduces

Jµ =


ρ
j1

j2

j3

 Fµν =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0


as a vector Jµ and a (0, 2) field strength tensor Fµν which is antisymmetric as Fµν = −Fνµ, then one
can express Maxwell’s equations as

∂µF
µν = Jν ∂[µFνλ] = 0

in terms of tensors which are also eight equations in total. One knows therefore that they are invariant
under all Lorentz transformations including boosts. They predict c and, as a consequence, c is invariant
under boosts.

The brackets in the second equation demand that one completely antisymmetrize over the exchange of
indices. Antisymmetrizing Tµν means T[µν] = 1

2 (Tµν − Tνµ). Because there are only the four possibilities
012, 013, 023, 123 for µνλ, the first and the second equation represent four equations each. One of the
four equations encoded in ∂[µFνλ] = 0 is 1

6 (∂0F12 + ∂1F20 + ∂2F01 − ∂0F21 − ∂1F02 − ∂2F10) = 0.

4 Applications to Physics

4.1 Relativistic Kinematics and Dynamics

In three dimensions with i ∈ {1, 2, 3} for Newtonian mechanics

xi(t)→ vi(t) =
dxi
dt
→ ai(t) =

dvi
dt

∑
Fi(t) = mai(t) =

dpi
dt

describe the kinematics on the left side and the dynamics on the right side where pi = mvi. Time t is a
universal, invariant, monotonically increasing parameter which can parametrize motion.

In four-dimensional spacetime with µ ∈ {0, 1, 2, 3} for Special Relativity xi → Xµ and vi → Uµ. One
problem is the question what U0 is, and a second problem is that Uµ = dXµ/dt is not a vector nor
any other kind of tensor because dXµ is a vector in spacetime but dt is a component of a vector. In
Special Relativity t is no longer universal and invariant as it was in Newtonian mechanics. Thus another
parameter is needed which is universal, invariant and monotonically increasing.
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The length of the worldline s =
∫ √

ds2 looks like a candidate for a universal, invariant
and monotonically increasing quantity, but because ds2 = −c2dt2 +dx2 +dy2 +dz2 < 0
for v < c (and especially in a rest frame with v = 0), instead of s the proper time
τ =

∫ √
|ds2| is used. In the rest frame with ds2 = −c2dt2 the quantity τ = c

∫
dt

is the “rest time”. The classification for infinitesimal displacements where ds2 < 0 is
called timelike for matter, ds2 = 0 is called lightlike for light (massless particles), and
ds2 > 0 is called spacelike for tachyonic motions can be extended to all vectors.

In Special and General Relativity often units are used such that the speed of light is one and distances
are measured in light-seconds. One can always restore factors of c by making the units consistent. From
now on the convention c = 1 is also used.

Defining 4-velocity Uµ and 4-momentum Pµ using the mass m as

Uµ =
dXµ

dτ
Pµ = mUµ (4.1)

gives the result

UµUµ = ηµνU
µUν = ηµν

dXµ

dτ

dXν

dτ
=
ηµνdX

µdXν

dτ2
=
ηµνdX

µdXν

−ds2
=

ηµνdX
µdXν

−ηµνdXµdXν
= −1

which seems strange because one expects UµUµ to be the speed squared similar to ~v ·~v = v2 in Newtonian
mechanics. However comparing it with

~v =

(
dx

ds
,
dy

ds
,
dz

ds

)
~v · ~v =

dx2

ds2
+
dy2

ds2
+
dz2

ds2
= 1

where ds is the path length shows that this is just a consequence of how the paths are parametrized.

The components of the 4-velocity Uµ are

U0(τ) =
dt

dτ
=
γdtrest

dτ
= γ

dτ

dτ
= γ U i(τ) =

dxi

dτ
=
dxi

dt

dt

dτ
= γvi γ =

1√
1− v2

in the frame S with coordinates (t, x, y, z). Note that the velocity ~v is the velocity of the particle and the
v in γ connects the frame S to the frame Srest, but they are luckily the same velocity. In the rest frame
is U0 = 1 and U i = 0, and in general one can write

Uµ =

(
γ
γ~v

)
Pµ =

(
mγ
mγ~v

)
for the 4-velocity Uµ and the 4-momentum Pµ.

For v � 1 (where 1 means c) the approximation γ ≈ 1 + 1
2v

2 + ... gives mγ ≈ m + 1
2mv

2 + ... = E and
mγvi ≈ mvi + ... = pi for the 4-momentum because 1

2mv
2 is the non-relativistic kinetic energy5 and mvi

the non-relativistic momentum. Therefore P 0 = E is the relativistic energy with the term m, ~p with the
three components P i is the relativistic momentum, and one gets

Pµ = mUµ =

(
E
~p

)
PµP

µ = m2UµU
µ = −m2 = −E2 + p2 E2 = p2 +m2 (4.2)

where the equation E2 = p2 +m2 (or E2 = |~p 2|c2 +m2c4 with c 6= 1) is called the mass-shell condition.

Even though the parametrization does not work when m2 = 0, this result does. One can now relate
the distinction between timelike, lightlike and spacelike relation between two events to the 4-momentum.
Then timelike means PµP

µ < 0 or m2 > 0, lightlike means PµP
µ = 0 or m2 = 0 and spacelike (or

tachyonic) means PµP
µ > 0 or m2 < 0.

One could try to relativize forces for the dynamics, but the primary concern here is the gravitational
force which will play out a bit differently.

5The famous formula E = mc2 states that mc2 is the energy of a particle at rest. This term also exists in the non-
relativistic approximation for v � c and is therefore not a consequence of Special Relativity.
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4.2 Densities and the Energy-Momentum Tensor

Given the energy-momentum vector Pµ the question is why one also needs the energy-momentum tensor
Tµν . In General Relativity the sources of gravity are usually large, so instead of thinking of one particle
at a time, a large number of them should be considered. The source of the gravitation and therefore of
the curvature is energy and momentum where energy includes mass.

Because densities may vary throughout space and time one works with infinitesimal
quantities. The particle number density where dN is the number of particles in the
small volume dV = dx dy dz can be written as dn = dN

dV in form of the infinitesimal
particle number density. One can define dnrest where the volume dVrest is at rest.
The number of particles dN is a scalar, and the question is whether dnrest is a
tensor. Boosting the infinitesimal volume along x by −v results in

dn→ dn′ =
dN

1
γ dx dy dz

= γ
dN

dV
= γdn > dn

and shows that it is not a tensor. Because dn′ = γdnrest is similar to dt′ = γdtrest one might guess that
dn is the time-component of a 4-vector. If Uµ is the 4-velocity of the infinitesimal volume then

dNµ = dnrestU
µ =

(
dnrestγ
dnrestγ~v

)
=

(
dn
dn~v

)
⇒ dNµ

rest =

(
dnrest

~0

)
then this is a vector because dnrest = dN

dVrest
is constant and Uµ is a vector. (Note that the infinitesimal

volume is at rest when the average velocity of all the particles moving in different directions is zero.) To
summarize, one had to introduce vector dNµ in order to make a density when starting with a scalar dN .

There is a deeper explanation for why creating a tensor density seems to raise the tensor nature of what
one starts with. In the above case the scalar as a (0, 0) tensor was raised to a vector as a (1, 0) tensor.
To specify a two-dimensional area in three dimensions a size and a direction (a normal dual vector) is
needed. A two-dimensional surface in three dimensions is defined by f(x, y, z) = 0. A sphere S2

R centered
around the origin is, for example, specified by f(x, y, z) = x2 + y2 + z2 − R2 = 0. The quantity normal
to the surface is (∂xf, ∂yf, ∂zf) and this is a dual vector.

To specify a three-dimensional volume in four dimensions one needs also a size and a direction where the
size is dV and the direction is specified by the dual vector nµ. In nµ dV the dual vector nµ is orthogonal
to the three-dimensional volume dV . (It does not matter whether this is in a four-dimensional space or
in three-plus-one-dimensional spacetime.)

Given a density dN
dV using dN = dN

dV dV is not well-suited in spacetime. With the density dNµ as a
4-vector and the volume nµ dV the expression dN = dNµ nµ dV is a scalar.

The goal is to create a density from the 4-momentum Pµ to allow distribution of energy and momentum.
More specific, the goal is to find dPµ = (?)nν dV and this needs a (2, 0) tensor Tµν which is called
the energy-momentum-tensor. This tensor plays an important role in General Relativity because it is
going to provide the source that creates curvature and gravitational interaction. The energy-momentum
tensor is symmetric such that Tµν = T νµ and that it only has ten independent components. It can be
represented by a 4× 4 matrix and is a (2, 0) tensor.

If one considers nµ = (1, 0, 0, 0) and dV = dx dy dz then dPµ = Tµν nν dV = Tµ0 n0 dV = Tµ0 dV .
Because P 0 is the relativistic energy E and P i the i-th component of the relativistic momentum ~p this
gives

dP 0 = T 00 dV ⇒ T 00 =
dE

dV
= ρ dP i = T i0 dV ⇒ T i0 =

dpi

dV
= πi

which are the energy density ρ and the momentum density πi.

Similarly, if one considers nµ = (0, 1, 0, 0) (choosing x as spatial direction) and dV = dt dy dz = dt dAyz
then dPµ = Tµν nνdV = Tµ1 n1dV = Tµ1 dt dAyz. Using the fact again that P i is the i-th component of
the relativistic momentum ~p leads to

T 11 =
dp1

dt

1

dAyz
= F 1

net

1

dAyz
T 21 =

dp2

dt

1

dAyz
= F 2

net

1

dAyz
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where T 11 is the pressure on dAyz and T 21, T 31 are the shear on dAyz. (The derivative of the momentum
is a force, the component of a force perpendicular to an area and divided by the size of an area is a
pressure, and a component of a force parallel to an area is a shear.)

To summarize, the energy-momentum tensor is a (2, 0)
tensor where T 00 is the energy density, the three com-
ponents T 0i = T i0 represent the momentum density, the
spacial diagonal components T ii correspond to the pres-
sure, and the remaining components specify the shear. In
the following mostly only the diagonal terms of the energy-
momentum tensor will be needed to be non-zero.

The components of the energy-momentum tensor can be specified as

Tµν =
dPµ

nν dV
=
dPµ Uν

dVrest
(4.3)

because the unclear mathematical meaning of a term where a vector is divided by a dual vector coming
from dPµ = Tµν nν dV can be resolved by recalling dNµ = dnrestU

µ and concluding

dNµ = dnrest U
µ = dN

Uµ

dVrest
and dNµ =

dN

nµ dV
⇒ 1

nµ dV
=

Uµ

dVrest

which is a useful result also in other situations. This allows to define the system (the volume) in the rest
frame giving some size with the 4-velocity relative to the rest frame.

As a first example this is applied to dust which is defined as a collection of particles at rest with respect
to each other. In the rest frame the volume sits still and in the volume the particles sit still. The
question is what is the energy-momentum tensor in an arbitrary frame. The infinitesimal 4-momentum
is dPµ = dN mUµ where Uµ is the same velocity for all particles and Pµ = mUµ is the momentum of
the individual dust particle. Using (4.3) gives

Tµν =
dPµ Uν

dVrest
=
dN mUµ Uν

dVrest
= dnrestmUµ Uν = ρrest U

µ Uν

where ρrest is the rest energy density because at rest m (actually mc2) is all energy there is and dnrest is
the particle density. In the rest frame one gets

Uµ =


1
0
0
0

 Tµνrest =


ρrest 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0


for the energy-momentum tensor of dust. This is not surprising and one could have guessed this result
because the particles have no momentum, and the shear and pressure are also obviously zero.

As a second example a perfect fluid is chosen which is defined as a collection of particles with random
velocities in an overall rest frame. Typically one can ignore viscosity (shear) so that T ij = 0 for i 6= j
and assume isotropy so that T 11 = T 22 = T 33 = p as part of the definition of a perfect fluid. Also the
momentum density is zero because there is no net flow. Thus one can guess

Tµνrest =


ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p


for the energy-momentum tensor in the rest frame with only an energy density ρ and pressure p. One
can write this as Tµνrest = (ρ+ p)Uµrest U

ν
rest + p ηµν giving

Tµνrest =


ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 =


ρ+ p 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

+


−p 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p


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which is useful because it is the tensor expression Tµν = (ρ + p)Uµ Uν + p ηµν constructed in the rest
frame but true in any frame.

This is the advantage of working with tensors. One can find an equation in a simple setting (often the
rest frame) and the equation is true in any reference frame if it is a tensor expression. If pressure p is
set to zero, the tensor expression found for the perfect fluid becomes Tµν = ρUµ Uν and this is what has
been found for dust in the previous example. The equation

Tµν = (ρ+ p)Uµ Uν + p ηµν (4.4)

is true for any perfect fluid in any frame. In General Relativity the energy-momentum tensor Tµν will
play the role of sources for curvature in a manner analogous to how the charge-current density Jµ does for
electromagnetism, and one can consider all sources as perfect fluids. The only thing left to be specified
is how ρ and p are related.

The energy-momentum tensor Tµν is an important component in Einstein’s equations, and the metric
gµν is a function to be determined by solving these equations. There are a few things to keep in mind:

Dimension Metric Inverse
Metric

Vectors and
Dual Vectors

Path of a
Particle

Galilean Space 3 gij = δij δij = δij vi = vi xi(t)

Minkowski Spacetime 3 + 1 gµν = ηµν ηµν = ηµν V µ 6= Vµ Xµ(τ)

Curved Spacetime 3 + 1 gµν(Xλ) gµν 6= gµν V µ 6= Vµ Xµ(τ)

Note that the metric is also in flat space not independent of the location and becomes gµν(Xλ) as it is in
curved space as soon as one chooses coordinate systems such as polar coordinates other than Cartesian
coordinates.

4.3 Relativistic Newtonian Gravity

A question which comes up here is whether curved spacetime is really needed. It may be possible to build
a relativistic version of Newton’s gravity. Newton’s law of gravity is

~FG12
=

Gm1m2

|~r1(t)− ~r2(t)|3
(~r1(t)− ~r2(t))

and uses the same t for two distant points ~r1 and ~r2 which implies that the gravitational influence is
communicated with infinite speed. If one tries to fix this with the gravitational influence communicated
by c, orbits become unstable. The relativistic gravity fails therefore.

This may surprise because a very similar theory that does work with finite speed is the Coulomb inter-
action

~FC12 =
k q1 q2

|~r1(t)− ~r2(t)|3
(~r1(t)− ~r2(t))

because the full treatment of electrodynamics with magnetic fields, the Liénard–Wiechert potential and
so on makes it completely consistent.

One might try a similar path for gravity which would lead to gravito-magnetic effects, but there are
two big problems. It is still based on mass m and misses the observed gravitational effects on particles
with m = 0, and it does not even get the predictions right when m 6= 0. (However, it serves as a good
approximation to General Relativity in the weak-field limit.) Despite all these attempts one needs a
completely different starting point than Newtonian gravity.

4.4 Equivalence Principles

From considerations of Newtonian gravity ~FG = mG~g and Newtonian mechanics
∑ ~F = mI~a where ~g

is the gravitational force and ~a the acceleration, one observes the so-called weak equivalence principle
mG = mI . In words, the inertial mass which is the resistance to acceleration independent of the kind
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of forces acting and the gravitational mass which plays a role in one specific force are perfectly equal
according to all kinds of experiments. If the gravitational force is the only force acting then ~g = ~a.

The weak equivalence principle ~g = ~a means that for massive objects and external gravity, a uniform
external gravitational field is indistinguishable from a uniform acceleration as illustrated in figure 4.1 (a)
with a little person throwing a ball in a lab which is considered small compared to the earth6. One can
extend the weak equivalence principle to the Einstein equivalence principle stating that for any object
and any force (except internal gravitation) a uniform external gravitational field is indistinguishable from
uniform acceleration. This shows that gravitation does not only act on matter with m 6= 0 but also
on light with m = 0 as shown in the figure (b) where the little person uses a flashlight. (Note that an
observer in an inertial frame sees the light beam as a straight line.)

Figure 4.1: The effect of the equivalence principles

It is obvious that a theory with the Einstein equivalence principle is going beyond the Newtonian law
of gravity. It is sufficient to motivate the basics of General Relativity, but one can go further. The
strong equivalence principle states that for any object and any force a uniform external gravitational field
is indistinguishable from a uniform acceleration. The restriction to external gravitational fields can be
removed, and this singles out General Relativity over alternative theories such as the Brans–Dicke theory.
This is the strongest version of the equivalence principle because all restrictions have been removed. The
difference between it and Einstein’s version only shows up when very large objects are involved.

Newtonian mechanics and Special Relativity share the concept of inertial frames which play a crucial
role. In Newtonian mechanics the inertial frames are those in which one can use Newton’s second law,
and in Special Relativity the framework is based on the tenet that physics including c is unchanged when
viewed from different inertial frames. However the question is how one can define respectively find inertial
frames. Newton’s first law states that in an inertial frame an object experiencing no net force will move
with a constant velocity.

Figure 4.2: Inertial frames in the presence of gravity

Aside from trying to balance multiple forces, the easiest way to establish an inertial frame is to find an
object which is unaffected by the forces present. Then this object defines an inertial frame in which
one can use Newton’s second law to describe the motion of objects that do feel forces. This works well
for electromagnetism as shown in figure 4.2 (a) where a charged particle with q = e+ feels the uniform

6The gravitational field of the earth is not really uniform because the earth is a sphere but if the lab is small compared
to the earth it looks like being uniform.

18



electric field as the force ~F = q ~E while an uncharged particle with q = 0 is not affected by the electric
field and can be used to establish an inertial frame. However the problem with gravity is that the Einstein
equivalence principle states that there are no objects which are unaffected by gravity as shown in figure
(b). Consequently no object can define an inertial frame. Gravity is in this sense very special because it
is the only force everything feels and everything feels the same way.

Einstein realized that a reference frame which is freely falling under the influence of external gravity is
the best scenario for establishing inertial frames as illustrated in figure (c). By going to a freely-falling
frame in the presence of gravity one actually mimics the behavior one expects to see in deep space
without gravity. The key to this working is the universality of how gravity influences objects. Everything
experiences ~a = ~g regardless of mass. This type of universal influence is one more reason to suspect that
gravity is less like the other forces and instead is tied to a universal feature like spacetime.

In all the equivalence principles it has been made clear that the gravitational field is
uniform since the canceling accelerations are uniform. If the lab is too big one starts seeing
nonuniform tidal effects. Restriction to small regions of space and time is needed such that
the final refinement of the Einstein equivalence principle can be phrased: Experiments
performed in a small, freely-falling lab over a short time give results that are indistinguishable to those
in an inertial frame in empty space.

5 Geometry of Curved Space

5.1 Manifolds

Special Relativity states that the laws of physics are invariant under transformations connecting inertial
frames, and spacetime is isotropic in space and homogenous in spacetime. General Relativity in contrast
states that the laws of physics are invariant under diffeomorphisms of spacetime and the connection
(gauge-field) facilitating this invariance should be rendered dynamical by the introduction of an invariant
field strength tensor. Similar to any gauge theory there is on one side a symmetry which is here the
invariance under diffeomorphism in spacetime and there is on the other side a gauge field which should
be able to propagate. The symmetry describes how things behave on curved space and respond to gravity,
and the gauge field describes how curvature arises dynamically from sources.

The task of describing the symmetry is similar to what has been done in Special Relativity with identifying
the transformations and expressing how tensors are transformed, but the coordinate systems and the
metric are no longer globally defined. Since each region can be made flat exclusively of the others,
there is no preferred coordinate system. (Coordinates are really not physical, thus much of this can be
considered in a coordinate independent form.) The fact that each region can be made flat is exactly the
Einstein equivalence principle because in a small region in space and time a freely-falling lab experiences
what looks like an inertial frame, a piece of spacetime without gravity.

This has two important implications. Firstly one can use Special Relativity in a freely-falling frame since
this correctly describes physics in deep space without gravity. Secondly when looking for what type of
spacetimes are allowed in General Relativity, they must be locally flat, and this leads to manifolds.

The following nomenclature will be used:

A :


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 B :


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 C :


a ... ... ...
... b ... ...
... ... c ...
... ... ... ...

 D :


−a ... ... ...
... b ... ...
... ... c ...
... ... ... ...


For the metric gµν case A specifies an Euclidean space, case B a Minkowski space, case C a Riemannian
space which has an Euclidean signature, and case D a pseudo-Riemannian space which has a Lorentzian
signature. (The numbers a, b, c, ... are assumed to be positive.) The metric of the Euclidean space and
of the Minkowski space assume this simple form only in in Cartesian coordinates.

A Cp n-dimensional manifold is defined as a set M with a maximal atlas. The set M here is a collection
of points in space or spacetime. (Nothing is said yet about coordinates.)
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The set M which is assumed to be n-dimensional can be broken up into pieces called
charts where all the charts cover all of M . A chart is defined as a subset U of M
with a one-to-one map φ : U → Rn such that the image of φ is open in Rn. (A
one-to-one map in contrast to a one-to-many or a many-to-one map is also called
injective. If a′ = φ(a) and b′ = φ(b) then two conditions are fulfilled: Firstly if a 6= b
then a′ 6= b′, and secondly if a′ 6= b′ then a 6= b. Open means that the boundary is not included.) These
maps just mean the ability to choose coordinates represented as n-tuples in Rn for a patch U .

The sphere S2 embedded in R3 as an example can be specified as x2 + y2 + z2 = R2

but to identify every point on the surface two values are sufficient. One can use the
polar angle θ and the azimuthal angle ϕ, and therefore (θ, ϕ) are coordinates for
a curved space taking values in R2. Thus all that is required of charts is that one
can setup coordinates as in this example. The mapping is from a possibly curved
space to a flat (Euclidean) space Rn. (Note that in this example the condition of
injectivity is not satisfied. The coordinate ϕ is undefined for θ = 0.)

An atlas on M is a collection of charts {(Uα, φα)} such that the union of all charts Uα is equal to M and
the charts are sewn together with Cp transition functions.

Supposing the two charts U1 and U2 overlap, and a point p is in the over-
lapping part U1 ∩ U2. With φ1(p) = p1 and φ2(p) = p2 and the fact that
both maps are injective, φ−1

1 (p1) = φ−1
2 (p2) = p. Because both points p1

and p2 are in Rn, the function φ1 • φ−1
2 defined as

p1 = φ1(p) = φ1 • φ−1
2 (p2)

for all p ∈ U1 ∩U2 is a map Rn → Rn. With p1 = (x1, y1, ...) and p2 = (x2, y2, ...) the transition function
φ12 = φ1 • φ−1

2 gives

x1 = fx(x2, y2, ...) y1 = fy(x2, y2, ...) ...

and these are just coordinate changes. (Note that this only makes sense if p2 satisfies p2 = φ2(p) for a
p ∈ U1 ∩ U2.)

Because the transition functions are functions Rn → Rn calculus and especially derivatives can be used.
If the p-th derivative of all transition functions φαβ exists and is continuous, the φαβ is Cp. The function
f with f(x) = x for x ≥ 0 and f with f(x) = −x for x < 0 is C0 because the first derivative has a
discontinuity at x = 0. The sine and cosine functions on the other hand are examples of C∞ functions.
If φαβ is C∞ and invertible the it is called a diffeomorphism. The coordinate transformations used in the
following will almost always be diffeomorphisms.

Assuming that there is a set M which has two different atlases satisfying all conditions then these are (if
one leaves out the word “maximal” in the definition of a manifold) two different manifolds. This is not
nice because two manifolds in this situations should be the same independent of the atlas chosen as long
all conditions are satisfied. Thus instead of a single atlas one uses an equivalence class of atlases. Every
single atlas one can imagine to cover a manifold is in this equivalence class. This basically means that
one can take one manifold and work with different atlases which are all equivalently good representations
of the manifold. One important consequence of the maximality of the atlas is that the Cp condition must
hold on all atlases even when two charts completely overlap.

In the following all these definitions will be applied to the example of the
manifold S1 to prove that the simple circle is a manifold. To show this, one
has to construct one representative element from the maximal atlas. The circle
S1 is one-dimensional but it will turn out that one needs at least two charts.
The first chart chosen uses θ to parametrize the circle from 0 to 2π starting
from top, and the second chart chosen uses ϕ to parametrize the circle also

from 0 to 2π but starting from the bottom such that θ, ϕ ∈ (0, 2π]. To map S1 to R1 an open subset of R1

is needed, but (0, 2π] is closed on one side and contains 2π. Restricting θ and ϕ both to the open interval
U1 = U2 = (π2 − ε,

3π
2 + ε) and defining φ1(θ) = x1 and φ2(ϕ) = x2 delivers the two charts building the

atlas. If ε is just a small positive number, the two charts overlap at π± ε and 3π± ε and cover all of S1.
The transition function φ12 = φ1 • φ−1

2 is x1 = φ12(x2) = x2 + π and belongs to C∞.
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5.2 General Coordinate Transformations

One cannot always cover M with one chart and can therefore not always have a global coordinate system
on M . Only if one can cover M with one chart then one can set up a global coordinate system. Otherwise
one uses coordinate transformations to piece together patches. In the case that M can be covered with
one chart, one can use two charts covering all of M but equipped with different maps.

One can write a coordinate change as Xµ′(Xµ) where the new coordinates
Xµ′ are a function of the old coordinates Xµ. The mapping φ12 changes
the coordinates of Rn on the right side of the figure into the coordinates of
Rn on the left side. Thus one can ignore that there is a set M inbetween
and just study the change of coordinates in Rn. The question is how the
derivatives of coordinate changes behave.

The chain rule states that d
dxg(f(x)) = d

dx (g • f)(x) = dg
df

df
dx . With two variables

f1(x, y) f2(x, y) g1(f1, f2) g2(f1, f2)⇒ ∂g1

∂x
=
∂g1

∂f1

∂f1

∂x
+
∂g1

∂f2

∂f2

∂x

∂g1

∂y
=
∂g1

∂f1

∂f1

∂y
+
∂g1

∂f2

∂f2

∂y

∂g2

∂x
=
∂g2

∂f1

∂f1

∂x
+
∂g2

∂f2

∂f2

∂x

∂g2

∂y
=
∂g2

∂f1

∂f1

∂y
+
∂g2

∂f2

∂f2

∂y

and this can be written with index notation as

∂

Xµ
=
∂Xµ′

∂Xµ

∂

∂Xµ′
∂

Xµ′
=

∂Xµ

∂Xµ′
∂

∂Xµ
(5.1)

for the transformation laws for partial derivatives.

Vectors and dual vectors exist in tangent and cotangent spaces, respectively.
Before they are described in terms of coordinates, vectors can be defined
without introducing coordinates. Given a manifold M , a point p ∈M and a
curve γ through p, this curve is assumed to have been parametrized through
γ : R1 → M,λ → γ(λ) which only gives points on γ such as γ(λp) = p.
Now an additional C∞ map f : M → R1, p → f(p) = αp which is defined
for all p ∈M is introduced. This gives a function f • γ : R1 → R1, λp → αp
with no reference to M .

Defining df
dλ as the change in α when λ changes gives df

dλ = d
dλ (f • γ). The parameter λ is associated

with the specific chosen curve. The derivative df
dλ is called the directional derivative of f along λ. This

derivative shows how the function f : M → R1 varies as one moves along a given curve. Using a different
curve will give a different directional derivative.

If one now considers all curves through the point p parametrized with different param-
eters κ, λ, µ, ν, ... then the set of directional derivatives for these curves independent
of a selected function f forms a vector space { ddκ ,

d
dλ ,

d
dµ ,

d
dν , ...}. (All the axioms for

a vector space are satisfied.) This construct establishes a vector space of tangents to
M at p and can therefore act as the tangent space.

The tangent space has been defined independent of coordinates. In order to
combine it with charts and introduce a coordinate representation of vectors,
one can ask how components would transform under coordinate transfor-
mations. A chart with p ∈ U and φ allows to write f • γ in an environment
around p as f • φ−1 • φ • γ because U is open and φ is one-to-one. This
function can be split into two parts where one is f • φ−1 : Rn → R1 and
the other is φ•γ : R1 → Rn such that one can label φ•γ as (φ•γ)µ. Using
the chain rule gives

df

dλ
=

d

dλ

(
(f • φ−1) • (φ • γ)

)
=
∂(f • φ−1)

∂(φ • γ)µ
d(φ • γ)µ

dλ

which can be written as
df

dλ
=

∂f

∂Xµ

dXµ

dλ
with defining Xµ = (φ • γ)µ and f(Xµ) = (f • φ−1).
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This leads to a so-called coordinate-adapted basis

d

dλ
=
dXµ

dλ
∂µ (5.2)

because function f is arbitrary. In this formula d
dλ is any directional derivative corresponding to a tangent

vector, dXµ

dλ are the components, and ∂µ are the basis vectors.

Since any vector V must exist in the tangent space, it must be expressible as V = V µ∂µ. Using (5.1) in

V µ∂µ = V µ
′
∂µ′ = V µ

′ ∂Xµ

∂Xµ′
∂µ = V ν

∂Xµ′

∂Xν

∂Xµ

∂Xµ′
∂µ

since vectors are invariant, one gets

V µ → V µ
′

=
∂Xµ′

∂Xµ
V µ ∂µ → ∂µ′ =

∂Xµ

∂Xµ′
∂µ (5.3)

as the transformation laws for vector components and basis vectors.

The dual vector ωµ θ̂
(µ) consumes vectors such that θ̂(µ) ê(ν) = δµν . Similar to ê(µ) = ∂µ one introduces

dXµ = θ̂(µ). Then the transformation laws are

ωµ → ωµ′ =
∂Xµ

∂Xµ′
ωµ dXµ → dXµ′ =

∂Xµ′

∂Xµ
dXµ (5.4)

for dual vector components and dual basis vectors because dXµ∂µ = dXµ′∂µ′ .

For general tensors the transformation law for tensor components depend similarly to Special Relativity
on the upper and lower indices. They can be deduced from (5.3) for vector components corresponding to
upper indices and from (5.4) for dual vector components corresponding to lower indices. The example

Tκλµν → Tκ
′λ′

µ′ν′ =
∂Xκ′

∂Xκ

∂Xλ′

∂Xλ

∂Xµ

∂Xµ′
∂Xν

∂Xν′
Tκλµν

illustrates this for a (2,2) tensor.

Comparing the transformation of a vector in Special Relativity on the left side and in General Relativity
on the right side

V µ → V µ
′

= Λµ
′

µ V
µ V µ → V µ

′
=
∂Xµ′

∂Xµ
V µ

shows that Λµ
′

µ is a constant or global transformation on (t, x, y, z) while ∂Xµ
′

∂Xµ allows local or coordinate
dependent transformations of (t, x, y, z). (Working in inertial frames with rectangular coordinates in flat
spacetime makes these two transformations the same. But with the approach in General Relativity one
can work in any frame with any kind of coordinates also in curved spacetime.)

The fact that the transformation in Special Relativity is global and the transformation in General Relativ-
ity is local causes a problem similar to the problem in gauge theories when going from a global symmetry
to a local symmetry. Unlike the constant transformation in Special Relativity the variable transformation
in General Relativity can in general not be moved past derivatives. Considering the derivative of a dual
vector as a simple example for a tensor

∂µTν → ∂µ′Tν′ =
∂Xµ

∂Xµ′
∂µ

(
∂Xν

∂Xν′
Tν

)
=

∂Xµ

∂Xµ′
∂Xν

∂Xν′
∂µTν + Tν

∂Xµ

∂Xµ′
∂ν

(
∂Xν

∂Xν′

)
the first term is all one should get if ∂µTν is supposed to transformed as a tensor, but the second term is
only zero if ∂Xν

∂Xν′
is constant. Thus, the derivative of a tensor is in general not itself a tensor. However for

physics one needs tensor equations and derivatives. The solution is the same as in the Standard Model of
Particle Physics where localizing the symmetry of a gauge theory requires the redefinition of the derivative
(and a gauge field) to the so-called covariant derivative which produces tensors from tensors.
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5.3 Local Inertial Coordinates

A single space can admit many different metrics coming from different coordinate choices. For example,
R3 can have the have the two metrics on the left side and in the middle

gij =

1 0 0
0 1 0
0 0 1

 gij =

1 0 0
0 r2 0

0 0 r2 sin(θ)
2

 gij =

(
R2 0

0 R2 sin(θ)
2

)

as shown in Appendix A. The left metric which satisfies gij = gij corresponds to Cartesian coordinates
and the metric in the middle with gij 6= gij corresponds to spherical polar coordinates. The look very
different. On the other hand the metric in the middle and the metric on the right side look very similar
aside from the fact that one corresponds to a three-dimensional space and the other to a two-dimensional
space, but the metric in the middle belongs to the flat space R3 and the right metric to the sphere S2

which is curved. Just looking at the metric does therefore not make it easy to see whether a space is
flat or curved, and in General Relativity the difference whether spacetime is curved and flat is caused by
gravity or the absence of it.

Another problem is that Einstein’s equivalence principle states that experiments performed in a small,
freely-falling lab over a short time interval give results that are indistinguishable to those in an inertial
frame in empty space. This means that by choosing the right coordinates the metric can be brought to
the form gµν = ηµν of Special Relativity with ∂λgµν ≈ 0 near the point in question and in a small enough
environment around this point such that spacetime looks flat in this region. The coordinates that do this
are called local inertial coordinates.

As an example for local inertial coordinates the sphere S2 with coordinates (θ, ϕ)
and radius R is used. It can be represented as

x = R sin(θ) cos(ϕ) y = R sin(θ) sin(ϕ) z = R cos(θ)

in Cartesian coordinates, and

gij =

(
R2 0

0 R2 sin(θ)
2

)
ds2 = R2 dθ2 +R2 sin(θ)

2
dϕ2

are the corresponding metric and line element.

At the north pole with θ ≈ 0 the metric is degenerate because g11 = R2 and the other three components
of the metric are zero. Because sin(θ) ≈ θ and z ≈ R (≈ constant) near the north pole, one can choose
better suited coordinates

x = Rθ cos(ϕ) y = Rθ sin(ϕ)

for a small environment around the north pole. Inverting gives

θ =

√
x2 + y2

R
ϕ = tan−1

(y
x

)
dθ =

1

R
√
x2 + y2

(x dx+ y dy) dϕ =
1

x2 + y2
(x dy − y dx)

such that

ds2
xy =

(
x2

x2 + y2
+R2 sin

(√
x2 + y2

R

)
y2

(x2 + y2)2

)
dx2

+

(
y2

x2 + y2
+R2 sin

(√
x2 + y2

R

)
x2

(x2 + y2)2

)
dy2

+ 2

(
xy

x2 + y2
−R2 sin

(√
x2 + y2

R

)
xy

(x2 + y2)2

)
dx dy

23



and with

sin

(√
x2 + y2

R

)
=

√
x2 + y2

R
− 1

6

(√
x2 + y2

R

)3

+ ...

one gets

ds2
xy =

(
1− 2y2

3R2
+ ...

)
dx2 +

(
1− 2x2

3R2
+ ...

)
dy2 +

(
4xy

3R2
+ ...

)
dx dy

for the line element expressed in {x, y} coordinates. The metric is therefore

gij ≈

1− 2y2

3R2

2xy

3R2

2xy

3R2
1− 2x2

3R2


with gij = I for x = y = 0 and ∂kgij |x=y=0 = 0. The second derivatives ∂2

∂x2 , ∂2

∂y2 and ∂2

∂x∂y , however, will
in general not vanish even for x = y = 0. These will turn out to be the quantities from which one can
build a good measure of curvature.

In Special Relativity when determining a tensor equation in the rest frame, the equation is true in any
frame. Similarly in General Relativity when a problem is solved in local inertial coordinates and expressed
in terms of tensors, the solution is true in any coordinates. But one has to be careful because ∂µTν is
not a tensor.

5.4 Covariant Derivative

As shown above and repeated here the derivative of a tensor may not be a tensor, but derivatives are
important in physics because physics without the possibility of change is boring. The translation laws
are

T ν
µ → T ν′

µ′ =
∂Xµ

∂Xµ′
∂Xν′

∂Xν
T ν
µ ∂µ → ∂µ′ =

∂Xµ

∂Xµ′
∂µ

for a (1,1) tensor as an example on the left and for the derivative on the right. The derivative is

∂µ T
ν → ∂µ′ T

ν′ =
∂Xµ

∂Xµ′
∂µ

(
∂Xν′

∂Xν
T ν

)
=

∂Xµ

∂Xµ′
∂Xν′

∂Xν
∂µ T

ν +
∂Xµ

∂Xµ′
T ν ∂µ

(
∂Xν′

∂Xν

)

for a (1,0) tensor where the first term in the final sum is tensorial but the second term is not. Thus the
result is not a tensor if the second term does not vanish because the transformation is constant. The
second term is the derivative of the transformation. The derivative of a scalar C

∂µ C → ∂µ′C =
∂Xµ

∂Xµ′
∂µ C

is a tensor because C does not change. For all other tensors a new derivative is needed7.

The new derivative called covariant derivative has the form ∇µ = ∂µ + Γ•µ• where the Γ is the new
part which is called a connection. This new derivative ∇µ should be linear, have some kind of Leibniz
property, make ∇µV ν a tensor, commute with contractions, reduce to ∂µ when acting on scalars, and be
compatible with the metric. Finally, the connection should be torsionfree.

In a first step some of the properties of ∇ when applied to two vectors S and T are explored. Linearity
means ∇(S + T ) = ∇S +∇T and the Leibniz property means ∇(S ⊗ T ) = (∇S)⊗ T + S ⊗ (∇T ). Both

7“In coordinate systems other than Cartesian ones the coordinate axes themselves move around when one moves to a
different point in the space, and this must be taken into account for a proper consideration of differentiation.” (Citation
from Introduction to General Relativity by Lewis Ryder, Cambridge University Press, 2009.)
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conditions are satisfied by ∇µ V ν = ∂µ V
ν + Γνµλ V

λ. This is the partial derivative of the vector plus a
linear transformation of the vector. Taking, for example, the derivative with respect to time gives

∇0 V
ν = ∂0 V

ν + Γν0λ V
λ

where one can think of Γν0λ V
λ as a matrix multiplying a vector, and this is what is meant by a linear

transformation. Linearity is obviously satisfied, but also the Leibniz condition holds as

∇µ(SνTλ) = ∂µ(SνTλ) + ΓνµαS
αTλ + ΓλµβS

νT β

= (∂µS
ν)Tλ + Sν(∂µT

λ) + (ΓνµαS
α)Tλ + Sν(ΓλµβT

β) = (∇S) νµ T
λ + Sν (∇T ) λµ

shows. The required tensorial transformation is

∇µV ν → ∇µ′V ν
′

=
∂Xµ

∂Xµ′
∂Xν′

∂Xν
∇µV ν

where ∇µ contains Γνµλ and ∇µ′ contains Γν
′

µ′λ′ . Because the transformation laws for ∂µ and V ν are
known, one can deduce

Γν
′

µ′λ′ =
∂Xµ

∂Xµ′
∂Xν′

∂Xν

∂Xλ

∂Xλ′
Γνµλ −

∂Xµ

∂Xµ′
∂Xλ

∂Xλ′
∂2Xν′

∂Xµ ∂Xλ
(5.5)

as the connection transformation law. The first term is tensorial and the second term is not as one could
have expected because there must be such a term to compensate for the non-tensorial part in ∂µ.

In a second step this is extended to a connection on tensors. To move from vectors to tensors one can
consider ∇µ(Tλλ) = (∇T ) λ

µ λ where first contraction and then derivative should give the same result as
derivative first and contraction afterwards. This can be written as

∇µ(Tλλ) = ∇µ(T νλ δ
λ
ν ) = (∇µT νλ)δλν + T νλ(∇µδλν ) = (∇T ) ν

µ λδ
λ
ν + T νλ(∇µδλν ) = (∇T ) λ

µ λ + T νλ(∇µδλν )

which implies ∇µδλν = 0 if the covariant derivative commutes with contractions. Since ∇µC = ∂µC for a
scalar C, one can get the covariant derivative of dual vectors with

∇µ(ωλV
λ) = (∇µωλ)V λ + ωλ(∇µV λ) = (∂µωλ + Γ̃σµλωσ)V λ + ωλ(∂µV

λ + ΓλµνV
ν)

= (∂µωλ)V λ + ωλ(∂µV
λ) + Γ̃σµλωσV

λ + ΓλµνωλV
ν) = ∂µ(ωλV

λ) + Γ̃σµλωσV
λ + ΓλµνωλV

ν

which only gives ∇µ(ωλV
λ) = ∂µ(ωλV

λ) if Γ̃σµλωσV
λ + ΓλµνωλV

ν = 0 or, after replacing λ with σ and ν

with λ, if Γ̃σµλωσV
λ = −ΓσµλωσV

λ. The covariant derivative is therefore

∇µ V ν = ∂µ V
ν + Γνµλ V

λ ∇µ ων = ∂µ ων − Γλµν ωλ ∇µ Tαβ = ∂µ T
α
β + Γαµλ T

λ
β − Γκµβ T

α
κ (5.6)

for vectors, dual vectors and (1,1) tensors. This shows that this is a derivative which has the important
property that it results in a tensor when applied to a tensor.

In a third step it is made sure that the connection is torsionfree and compatible with the metric because
there are still several possibilities for the Γλµν remaining. Suppose there are two different connections Γλµν
and Γ̃λµν for two different covariant derivatives ∇ and ∇̃ then

∇µV λ − ∇̃µV λ = ∂µV
λ + ΓλµνV

ν − ∂µV λ − Γ̃λµνV
ν = (Γλµν − Γ̃λµν)V ν

which shows that Γλµν − Γ̃λµν must be a tensor because V ν and ∇µV λ−∇̃µV λ are tensors. The difference

of two connections is therefore a tensor. So one can start with a connection Γλµν and form the torsion

tensor Tλµν defined as

Tλµν = Γλµν − Γλνµ = 2Γλ[µν]

which is a tensor (as its name suggest). In general given a connection Γλµν one can break it up in a
antisymmetric and a symmetric piece

Γλµν =
1

2

(
Γλµν − Γλνµ

)
+

1

2

(
Γλµν + Γλνµ

)
=

1

2
Γλ[µν] +

1

2
Γλ(µν)
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to get a torsionfree version Γλ(µν) from any connection. (The antisymmetric piece is tensorial, but the
symmetric piece is not. Thus one can eliminate the antisymmetric piece and only use the symmetric
non-tensorial piece.) Finally using metric compatibility which means ∇µ gκλ = 0 to make the metric not
constant but covariantly constant together with the torsionfree property leads to the so-called Christoffel
connection8 with the Christoffel symbols Γλµν which will be used here. With Γλµν = Γλνµ, gµν = gνµ and

(A)κµν : ∇κ gµν = ∂κ gµν − Γλκµ gλν − Γλκν gµλ = 0

(B)µνκ : ∇µ gνκ = ∂µ gνκ − Γλµν gλκ − Γλµκ gνλ = ∂µ gνκ − Γλµν gλκ − Γλκµ gλν = 0

(C) νκµ : ∇ν gκµ = ∂ν gκµ − Γλνκ gλµ − Γλνµ gκλ = ∂ν gκµ − Γλκν gµλ − Γλµν gλκ = 0

and (A)− (B)− (C) = ∂κ gµν − ∂µ gνκ − ∂ν gκµ + 2 Γλµν gλκ one gets

Γλµν =
1

2
gλκ (∂µ gνκ + ∂ν gκµ − ∂κ gµν) (5.7)

which defines the Christoffel connection in terms of the metric. The object Γλµν can be calculated given
explicit coordinates Xµ, but it is obviously not a tensor and does therefore not transform the way tensors
do. The transformation law for them is given by (5.5).

5.5 Interpretation of the Covariant Derivative

As an rather easy example R2 with coordinates (r, θ) and

ds2 = dr2 + r2 dθ2 gij =

(
1 0
0 r2

)
gij =

(
1 0
0 r−2

)
is used. The Christoffel symbols are Γrθθ = −r, Γθrθ = Γθθr = 1

r and all others are zero. Calculating ~∇ · ~v
using the apparatus of the Christoffel connection gives

∇µV µ = δµν ∇µ V ν = δµν (∂µ V
ν + Γνµλ V

λ) = ∂µ V
µ + Γµµλ V

λ

= ∂r v
r + ∂θ v

θ + Γrrr v
r + Γrrθ v

θ + Γθθr v
r + Γθθθ v

θ = ∂r v
r + ∂θ v

θ +
1

r
vr

compared with the expression ~∇ · ~v = ∂r v
r + 1

r∂θ v
θ + 1

rv
r from electromagnetism textbooks shows

a disagreement in the middle term. The difference comes from the fact that the expression from the
textbooks use an orthonormal basis with ê(r) · ê(r) = 1 and ê(θ) · ê(θ) = 1 leading to the metric I while the
basis used in this example satisfies ê(r) · ê(r) = 1 but ê(θ) · ê(θ) = r2 leading to the metric shown above.

Figure 5.1: The movement of a vector in space

The covariant derivative ∇µ V ν = ∂µ V
ν + Γνµλ V

λ describes how the vector V ν changes as it moves
around in space. This movement can happen in two ways as shown in figure 5.1. The quantity ∂µ V

ν

tells whether the vector V ν changes relative to the basis while the quantity Γνµλ V
λ tells how the basis

vectors change as the vector V ν moves in space. If one compares the vector in (a) moving from the right
to the left position and in (b) also moving from the right to the left position and ignores the basis vectors,
then the vector has changed exactly the same way. In (a) however ∂µ V

ν 6= 0 and Γνµλ V
λ = 0 because

8Other theories of gravity use other connections. If gravity and spin are combined, for example, the condition that the
connection is free of torsion has to be relaxed.
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the basis has not changed, and in (b) ∂µ V
ν = 0 and Γνµλ V

λ 6= 0 because the components of the vector
have not changed with respect to the basis. In both cases ∇µ V ν 6= 0 because the vector has changed.
If ∇µ V ν = 0 then the vector V ν is covariantly constant, and this can also happen in two ways. In (c)
neither the components nor the basis change such that ∂µ V

ν = 0 and Γνµλ V
λ = 0 with the obvious

consequence ∇µ V ν = 0 while in (d) ∂µ V
ν 6= 0 and Γνµλ V

λ 6= 0 but the changes cancel each other such
that the result is ∇µ V ν = 0.

5.6 Parallel Transport

The covariant derivative can also tell how to move vectors in space from one tangent space to another
tangent space. When considering

∂µ V
ν |Xµ = lim

εµ→0

V ν(Xµ + εµ)− V µ(Xµ)

εµ
∇µ V ν |Xµ = lim

εµ→0

V ν|| (X
µ + εµ)− V µ(Xµ)

εµ

the left definition does not make sense because the two vectors V ν(Xµ+εµ) and V µ(Xµ) exist in different
tangent spaces. The vector V ν|| (X

µ + εµ) is not the vector V ν(Xµ + εµ) itself in its tangent space but is

moved back to the tangent space of V ν(Xµ) using parallel transport before subtracting.

Parallel transport keeps the vector parallel to itself during the move in a very
sensible way. Since V ν|| (X

µ + εµ) and V ν(Xµ) are in the same tangent space
they can be subtracted. This sensible way to move vectors from one tangent
space to another is achieved by the covariant derivative.

A formal definition of parallel transport using the covariant derivative ∇µ moves the vector V ν along a
curve Xµ(λ) using

d

dλ
=
dXµ

dλ
∂µ

D

dλ
=
dXµ

dλ
∇µ =

d

dλ
+ Γ•µ•

dXµ

dλ

DV ν

dλ
=
dXµ

dλ
∇µ V ν = 0

where the left definition in flat space with Cartesian coordinates is replaced by the middle definition using
the covariant derivative such that the right equation is satisfied. The right equation written as

dV ν

dλ
+ Γνµκ

dXµ

dλ
V κ = 0 (5.8)

defines therefore the parallel transport of the vector V ν along the curve Xµ(λ). To use equation (5.8)
one can specify the vector one wants to start with and then solve this differential equation. This will tell
the components of the vector as it moves along the curve. That is the unique parallel transport of that
vector along that path.

One can extend this definition to arbitrary tensors

D

dλ
Tαβ =

dXµ

dλ
∇µ Tαβ =

dXµ

dλ

(
∂µ T

α
β + Γαµρ T

ρ
β − Γσµβ T

α
σ

)
= 0

such that given a path Xµ(λ) and the value of Tαβ at Xµ(λ0) one can solve this differential equation for
Tα||β at any other point in the path.

Parallel transport is important for three reasons. Firstly it is part of constructing
a consistent derivative ∇µ which includes also the change of the basis vectors.
Secondly it helps detect curvature. Thirdly it helps identify geodesic paths which
encode the response of particles to the curvature of space.

Moving a vector along a path in flat space R2 does not change its direction. Thus after
moving it around on a closed path it still points in the same direction and remains the same
vector. This is different when moving the vector on a curved space such as S2. Moving a
vector from the north pole along a meridian (1) to the equator, along the equator (2) for
a while and finally along another meridian (3) back to the north pole results in another
vector pointing in a different direction. If the vector is initially tangent to the path, it
will remain parallel to itself as best as it can but it has to exist in the tangent space at
each point it is moved to.
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5.7 Geodesics

There are two different covariant derivatives

∇µV ν = lim
∆Xµ→0

V ν|| (X
µ + ∆Xµ)− V µ(Xµ)

∆Xµ

DV ν

dλ
= lim

∆λ→0

V ν|| (X
µ(λ+ ∆λ))− V µ(Xµ(λ))

∆Xµ
=
dXµ

dλ
∇µ

which both use parallel transport but are based on different paths. In the derivative ∇µV ν a value for
the coordinate µ is selected and the path is a shift along Xµ. In DV ν

dλ which is called directional covariant
derivative the shift is along the curve Xµ(λ) which can be arbitrary and may not be aligned along a
coordinate axis. The expression (dXµ/dλ)∇µ states that to find out how V ν varies with λ one can first
figure out how V ν varies with the coordinates and then figure out how the coordinates vary with λ.

The first half of electromagnetism is given by Maxwell’s equations which specify the sources and the
second half is given by the Lorentz force and Newton’s second law which specify what a charged particle
does when put into an electromagnetic configuration. In General Relativity there is an analogous split
into Einstein’s equations telling how sources create curvature and the geodesic equation showing how
particles move through spacetime.

There are two ways to define a geodesic path Xµ
geo(λ) both with strengths and weaknesses.

Curves Xµ(λ) which extremize the distance between two points are geodesics, and curves
Xµ(λ) which parallel-transport their own tangent vectors are geodesics.

In R2 the shortest path between two points A and B is the straight line, and it is obvious
that the tangent vectors which are parallel to the straight line are parallel-transported on
this line. A path on the other hand which is not a straight line is therefore nongeodesic,
and the different tangent vectors are not parallel to each other.

Comparing a circle in the two different spaces R2 and S1 shows that parallel transport
can mean two different things on two paths looking the same. In R2 what starts at A as
a tangent vector is at B no longer a tangent vector. The circle is therefore in R2 not the
shortest path from A to B. In S1 the tangent vector at A parallel-transported to B is
still a tangent vector. This path from A to B is an extremal path in S1 and therefore a
geodesic. Tangent vectors are constrained to exist in the tangent space. In S1 the tangent
space at one point is a line touching the circle in this point.

To formalize the definition of geodesics by parallel transport one should recall that dXµ

dλ are the compo-
nents of the tangent vectors for the curve Xµ(λ). For a geodesic Xµ

geo(λ) these components should be
covariantly constant along the curve or, in other words, should be parallel to each other. The path Xµ(λ)
is therefore a geodesic if

D

dλ

dXµ

dλ
=
dXν

dλ
∇ν

dXµ

dλ
=
dXν

dλ

(
∂ν

dXµ

dλ
+ Γµνκ

dXκ

dλ

)
= 0

is satisfied which can be written as

d2Xµ

dλ2
+ Γµνκ

dXν

dλ

dXκ

dλ
= 0 (5.9)

and is called the geodesic equation.

This is a second order differential equation which therefore needs two boundary conditions before it can
be solved. This lead to two possibilities:

1. One can generate the geodesic “launched” from initial position Xµ(λ0) and “velocity” dXµ

dλ |λ0
.

2. One can give an initial and final position and find the extremal path between them.

Since Γµνκ depends on gµν , the explicit form will vary for different geometries.

As an intuitive example, Γ = 0 in R3 with Cartesian coordinates such that d2Xµ

dλ2 = 0 has the solution
Xµ(λ) = λεµ +Xµ

0 where εµ and Xµ
0 are constants from boundary conditions. This is a straight line.

28



Another example is R2 with polar coordinates (r, θ) which shows the extremization more
explicitly. The path between A and B is Xµ(λ) = (r(λ), θ(λ)) and

ds2 = dr2 + r2 dθ2 Γrθθ = −r Γθθr = Γθrθ =
1

r

are the line element and the relevant Christoffel symbols for polar coordinates in R2. The parameter λ
is chosen to be the path length s such that Xµ(s) = (r(s), θ(s)). The total path length from A to B is

sAB =

∫ B

A

ds =

∫ B

A

√
dr2 + r2dθ2 =

∫ B

A

√
dr2

ds2
+ r2

dθ2

ds2
ds =

∫ B

A

√
v2
r + r2v2

θ ds

with vr = dr
ds and vθ = dθ

ds because extremizing this is akin to extremizing an action S =
∫
L(xi, vi)dt of

a Lagrangian in classical mechanics. The solution is therefore the Euler-Lagrange equation

d

ds

(
∂L

∂vi

)
− ∂L

∂xi
= 0 L =

√
v2
r + r2v2

θ

d

ds

(
∂L

∂vr

)
− ∂L

∂r
=
d2r

ds2
− r

(
dθ

ds

)2

= 0

d

ds

(
∂L

∂vθ

)
− ∂L

∂θ
=
d2θ

ds2
+

2

r

dr

ds

dθ

ds
= 0

where t has been replaced by s. If one compares this with the result of the geodesic equation (5.9)

d2Xµ

ds2
+ Γµνκ

dXν

ds

dXκ

ds
= 0

d2r

ds2
+ Γrθθ

(
dθ

ds

)2

=
d2r

ds2
− r

(
dθ

ds

)2

= 0

d2θ

ds2
+ Γθθr

dθ

ds

dr

ds
+ Γθrθ

dr

ds

dθ

ds
=
d2θ

ds2
+

2

r

dr

ds

dθ

ds
= 0

where λ has been replaced by s, then both ways give the same result. (Note that L = 0 because of the
above integrals from A to B which are

∫
ds =

∫
Lds.)

If one is working in a Lorentzian signature spacetime such as Minkowski spacetime then

τAB =

∫ B

A

√
−ds2

and timelike geodesics which correspond to massive particles actually maximize the spacetime length. (A
massive object can be at rest where ds2 = −c2dt2 + dx2 + dy2 + dz2 becomes ds2 = −c2dt2.)

To demonstrate this in an example one can consider a geodesic path u with constant
velocity or at rest in M2 with ds2 = −dt2 + dx2 (setting c = 1) and an accelerated
non-geodesic path v. Both start at ti in point A with xi and end at tf in point B also
with xi, but u did not move and v moved to a point with xm. For u one gets

τAB =

∫ B

A

dt = tf − ti

and the time from A to B is just tf − ti. For v one gets

τAB =

∫ B

A

√
dt2 − dx2 =

∫ B

A

√
1− v2

x dt =

∫ tm

ti

√
1− v2

x dt+

∫ tf

tm

√
1− (−vx)2 dt =

∫ tf

ti

√
1− v2

x dt

and the time from A to B is < tf − ti. If vx is constant, the value
√

1− v2
x is smaller than one. This

calculation is however also valid for velocities which are not constant. Thus the path directly from A
to B is therefore longer than the indirect path from A to B, and there does not exist a shortest path
because one can make it shorter and shorter by going further and further away. As a consequence in this
space the only extremal path is the longest path.

By the way, these two trajectories are representative of those in the twin paradox. The twin who remains
on earth corresponds to u and is older than the one that travels with a spaceship away and then comes
back corresponding to v.
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5.8 Curvature

One would like to have a coordinate invariant way of specifying that a space is flat:

i) The metric even in flat space depending on the chosen coordinates does not easily show whether a
space is flat or not.

ii) The Christoffel symbols in flat space with Cartesian coordinates vanish, but the condition that the
Christoffel symbols must be zero in flat space does not work because they are not tensors.

iii) One can always choose locally inertial coordinates such that the metric becomes the identity and the
Christoffel symbols vanish even in curved space.

Thus, these three criteria are not useful to distinguish flat and curved spaces.

As shown above, parallel-transporting a vector on S2 from the north pole to the
equator, further on the equator for a while and back to the north pole brings the
vector back changed. (This is not true for all closed path because parallel-transporting
a vector on the equator alone does not change it, but there is always a closed path
where the vector changes.) Choosing an infinitesimal closed path from A to B and
back to A as in the figure, one can take a vector and parallel-transport it from A to
B along one path and back to A along the other path. Calling the vector V λA this vector at A before it
gets parallel-transported and Ṽ λA after it has been parallel-transported, then

Ṽ λA = (− ˆ∆Xν) (− ˆ∆Xµ) ˆ∆Xν ˆ∆Xµ V λA

where the ˆ∆Xµ and so on are some operators performing the parallel-transport. If Ṽ λA − V λA = δV λA is
zero, then the space is flat. (Instead of the infinitesimal square one can use another closed path such as
a triangle on a sphere S2, for example, which goes from the north pole to the equator, along the equator
for a while and back to the north pole.) The question remains what ˆ∆Xµ is.

To find out whether it is ∇µ one can compute the commutator of two covariant derivatives as they act
on vectors. Using the fact that ∇ν V λ is a (1,1) tensor, the commutator is

[∇µ,∇ν ]V λ = ∇µ∇νV λ −∇ν∇µV λ

=
(
∂µ(∇νV λ)− Γκµν∇κV λ + Γλµκ∇νV κ

)
−
(
∂ν(∇µV λ)− Γκνµ∇κV λ + Γλνκ∇µV κ

)
=
(
∂µ(∂νV

λ + ΓλνρV
ρ)− Γκµν∇κV λ + Γλµκ∇νV κ

)
−
(
∂ν(∂µV

λ + ΓλµρV
ρ)− Γκνµ∇κV λ + Γλνκ∇µV κ

)
=
(
∂µ∂νV

λ + (∂µΓλνρ)V
ρ + Γλνρ∂µV

ρ − Γκµν∂κV
λ − ΓκµνΓλκρV

ρ + Γλµκ∂νV
κ + ΓλµκΓκνρV

ρ
)

−
(
∂ν∂µV

λ + (∂νΓλµρ)V
ρ + Γλµρ∂νV

ρ − Γκνµ∂κV
λ − ΓκνµΓλκρV

ρ + Γλνκ∂µV
κ + ΓλνκΓκµρV

ρ
)

=
(
(∂µΓλνρ)V

ρ + ΓλµκΓκνρV
ρ
)
−
(
(∂νΓλµρ)V

ρ + ΓλνκΓκµρV
ρ
)

=
(
∂µΓλνρ − ∂νΓλµρ + ΓλµκΓκνρ − ΓλνκΓκµρ

)
V ρ

after removing canceling terms such ∂µ∂νV
λ − ∂ν∂µV λ. The commutator [∇µ,∇ν ] parallel-transports a

vector on two different paths from one point to another, and because Γ ∼ ∂g this is [∇µ,∇ν ] ∼ ∂2g+(∂g)2.
It does not vanish even in a local inertial frame and is therefore a good measure for curvature.

Because [∇µ,∇ν ] is a tensor, also ∂µΓλνρ − ∂νΓλµρ + ΓλµκΓκνρ − ΓλνκΓκµρ is a tensor. Therefore the tensor

[∇µ,∇ν ] = Rλρµν = ∂µΓλνρ − ∂νΓλµρ + ΓλµκΓκνρ − ΓλνκΓκµρ (5.10)

which is called the Riemann curvature tensor measures the curvature. It has 44 = 256 independent
components in four dimensions. With Rκρµν = gκλR

λ
ρµν one can show that

Rκρµν = −Rκρνµ (antisymmetric in the last two indices because of the definition of the commutator)
Rκρµν = −Rρκµν (antisymmetric in the first two indices)
Rκρµν = Rµνκρ (symmetric under exchange of the first two and the last two indices)
Rκρµν +Rκνρµ +Rκµνρ = 0 (cyclic reordering of the last three indices)

such that the number of independent components reduce to 20. Because Rλρµν is a tensor, it vanishes in
all coordinate systems if it vanishes in one of them.
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A useful fact in the following is that T (µν)W[µν] = 0 as one can easily check in two dimensions with

T (ij)W[ij] = T 11W11 + T 12W12 + T 21W21 + T 22W22 = T 110 + T 12W12 − T 12W12 + T 220.

Space is flat if Rλρµν = 0, and this property is coordinate invariant because it is a tensor, but there are
other degrees of flatness which can be specified with quantities built from the Riemann curvature tensor.
All contractions of the Riemann curvature tensor are:

i) Rλλµν = gλκRκλµν = g(λκ)R[κλ]µν = 0

ii) Rλρλν = gλκRκρλν = Rρν called Ricci tensor

iii) Rλρµλ = −Rλρλµ = −Rρν
The Ricci tensor is symmetric such that Rµν = Rνµ because of R[κλ] [µν]. One can go a step further and
contract the two indices of the Ricci tensor to get R = Rνν = gνµRµν called Ricci scalar.

One can ask what one gets if one takes the Riemann curvature tensor and subtracts all possible contrac-
tions of it. The remaining tensor is the Weyl tensor Cρσµν . This tensor is not used in the following, but
the idea is that the set {Cρσµν , Rµν , R} contains all information in the Riemann curvature tensor.

The degrees of flatness are:

Rλρµν = 0 means really flat (flat-flat) such as Rn, Mn, Tn.

Rµν = 0 means Ricci-flat such as AdS5 × S5.
Cρσµν = 0 means conformally-flat such as all two-dimensional pseudo-Riemannian manifolds.
R = 0 does not mean much.

The space Tn is the n-dimensional torus. The space AdS5 × S5 is ten-dimensional and S5 is a five-
dimensional sphere with radius R. A sphere has positive curvature, but the anti-de Sitter space AdS5

has a negative radius and is a negatively curved space. The Riemann curvature tensor is not zero, but
the Ricci tensor is because the R and −R cancel. Conformally-flat means that it can be mapped to flat
space with a conformal transformation. If a space is maximally symmetric, then R = 0 determines the
curvature completely. Ricci-flat spaces play an important role in General Relativity.

6 Physics in Curved Spaces

6.1 Conserved Quantities and Spacetime Symmetries

Recalling an argument from non-relativistic mechanics allows to conclude from the Euler-Lagrange equa-
tions

d

dt

(
∂L

∂ẋi

)
− ∂L

∂xi
= 0 pi ≡ ∂L

∂ẋi
⇒ dpi

dt
=
∂L

∂xi

(where pi is the momentum conjugate to coordinate xi) that pi is constant if L does not depend on xi.
This is a simple version of a more powerful argument by Emmy Noether that also applies to field theories
and internal as well as spacetime symmetries. In general, a continuous symmetry of an action gives
rise to a conserved current. Symmetries and conserved quantities are incredibly useful tools for solving
equations of motion. The Lagrangian formulation of General Relativity is not shown here, but if one
restricts to spacetime symmetries (also called isometries) then one can take a slightly different approach.

In General Relativity are 4-momenta given by Pµ = mUµ = mdXµ

dτ for massive particles. The geodesic
equation can be written as

dXν

dτ
∇ν

dXµ

dτ
= P ν ∇ν Pµ = 0 (6.1)

and further processed by multiplying with gκµ to

0 = P ν ∇ν Pκ = P ν(∂ν Pκ − Γλνκ Pλ) = P ν ∂ν Pκ − P ν Γλνκ Pλ

= m
dXν

dτ
∂ν Pκ − P ν

1

2
gλρ (∂νgκρ + ∂κgρν − ∂ρgνκ)Pλ = m

dPκ
dτ
− 1

2
(∂νgκρ + ∂κgρν − ∂ρgνκ)P νP ρ

= m
dPκ
dτ
− 1

2
(∂ν gρκ − ∂ρ gνκ)P νP ρ − 1

2
(∂κ gρν)P νP ρ = m

dPκ
dτ
− 1

2
(∂κ gρν)P νP ρ
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using metric compatibility ∇ν gκµ as well as the fact that P νP ρ is symmetric and ∂ν gρκ − ∂ρ gνκ is
antisymmetric under ν ↔ ρ. Hence one finds that mdPκ

dτ = 0 if ∂κ gρν = 0 or, in other words, if gρν is
independent of Xκ. This is a conservation result similar to pi is conserved if L is independent of xi.

As nice as this result seems, it is not particularly useful because it is a coordinate-dependent statement.
If one uses Cartesian coordinates in R2, for example, then the metric is the identity and therefore
independent of x and y, but in polar coordinates the metric depends on r. That is weird because it is
the same space. One would like to have a coordinate-independent way of identifying symmetries and
conserved quantities.

Thus the goal is to find a momentum component which is constant. If Pσ
∗

is this constant momentum

component (one particular component and not a whole vector) such that dPσ
∗

dτ = 0, then with Kµ Pµ =

Pσ
∗

= Kµ P
µ which is a scalar, the vector Kµ is defined and

dPσ
∗

dτ
= 0 =

d(Kµ P
µ)

dτ
=
dXν

dτ
∂ν(Kµ P

µ) =
dXν

dτ
∇ν(Kµ P

µ)

0 = m

(
dXν

dτ
∇ν(Kµ P

µ)

)
= P ν Pµ∇ν Kµ +Kµ P

ν ∇ν Pµ = P ν Pµ∇ν Kµ

is satisfied where P ν ∇ν Pµ = 0 because of the geodesic equation in the form (6.1). One can rewrite this
equation further as

0 = P ν Pµ∇ν Kµ = P ν Pµ∇(ν Kµ) + P ν Pµ∇[ν Kµ] = P ν Pµ∇(ν Kµ)

because one can split any matrix always into a symmetric and an antisymmetric part, and the antisym-
metric part is zero because it itself is the product of the symmetric part P ν Pµ and the antisymmetric
part ∇[ν Kµ]. This shows that Kµ is a symmetry of the geometry and Kµ P

µ is a conserved quantity if
∇(ν Kµ) = 0.

The vector Kµ is called Killing vector, and the equation ∇(ν Kµ) = 0 which is a tensor equation (and
therefore independent of the coordinates) is called the Killing equation. Killing vectors are in one-to-one
correspondence to conserved quantities. For every Killing vector there is a symmetry of the geometry. To
find a Killing vector one solves the Killing equation which is a differential equation. To solve it explicitly
one has to choose a particular coordinate system, but as soon as one has found a solution, one can
transform it to any coordinate system one wants.

The question is how many solutions of the Killing equation should one expect. In general this is hard
to know in advance, but for maximally symmetric spaces there is a simple answer. Any manifold looks
locally like Rn or Mn with n translations and 1

2n(n − 1) rotations for Rn or Lorentz transformation for
Mn which together form the Euclidean group or the Poincaré group, respectively. Thus in total there are
n+ 1

2n(n− 1) = 1
2n(n+ 1) local symmetries (10 in four dimensions).

This may not be the total number of Killing vectors because the entire space may not be as symmetric
as Rn or Mn are. If there are all Killing vectors which are maximally possible (which means that all of
the local symmetries are also globally valid), then the space is maximally symmetric. The spaces Rn or
Mn are maximally symmetric, but there are other spaces which are maximally symmetric but are neither
Rn nor Mn.

The sphere S2 is maximally symmetric, because through its embedding into R3 it is known
that it is symmetric under rotations in the planes xy, xz, yz, and this gives 3 = 1

2 2 (2 + 1)
symmetries. From the point of view of somebody at the north pole P , a rotation in the
xy-plane is a rotation, a rotation in the xz-plane is a translation in the x-direction, and a
rotation in the yz-plane is a translation in the y-direction. Thus in fact there are not three
rotations, but there are n = 2 translations and there is 1

2n(n− 1) = 1 rotation.

Maximally symmetric spaces do not have to be flat, but their curvature takes a simple form. Due to
the translations invariance, if one knows the Riemann curvature tensor Rλρµν at any point, it must have
the same value at any other point and is therefore constant. For maximally symmetric spaces there is a
simple way to calculate the curvature as

Rλρµν =
R

n(n− 1)
(gλµ gρν − gλν gρµ) (6.2)
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which does not contain any derivatives. Note that this equation satisfies the symmetries and antisymme-
tries of Rλρµν . It is antisymmetric for λ↔ ρ and for µ↔ ν, and it is symmetric for λρ↔ µν.

This is a catalog of maximally symmetric spaces:

Euclidean Lorentzian

R = 0 Rn, Tn (Euclidean, tori) Mn, Mn × Tn (Minkowski, Minkowski×tori)

R > 0 Sn (spheres) dSn (de Sitter)

R < 0 Hn (hyperbolic) AdSn (anti-de Sitter)

6.2 The Einstein Field Equations

All concepts have been presented to allow stating the content of General Relativity which answers two
questions. The first question is how spacetime gets curved, and the second question is how this affects
the behavior of particles. The answer to the first question is given by Einstein’s field equations. The
answer to the second question is that the path of a particle is a geodesic if gravity is the only acting force.

Spacetime gets curved according to Einstein’s field equations which are

Rµν −
1

2
gµν R = 8πGTµν (6.3)

where Rµν is the Ricci tensor, gµν is the metric, R is the Ricci scalar, G is the Newton constant, and Tµν
is the energy-momentum tensor. The left side Gµν = Rµν − 1

2 gµν R is called the Einstein tensor, and the
energy-momentum tensor Tµν contains all sources including mass, energy, pressure and electromagnetic
fields. Because Rµν , gµν and Tµν are symmetric under µ ↔ ν, there are ten independent equations and
the metric has ten independent components in four dimensions.

The Einstein field equations are similar to the Maxwell equations. One provides sources with Tµν and
then one solves the differential equations for the geometry in this case. The goal is to find the metric in
order to calculate the Christoffel symbols, and one uses the Christoffel symbols to calculate the Riemann
curvature tensor, and one uses the Riemann curvature tensor to finally calculate the Ricci tensor and the
Ricci scalar.

Ten unknown components of the metric gµν and ten equations in (6.3) look fine, but the Riemann
curvature tensor Rλρµν defined in (5.10) also satisfies a geometric condition called Bianchi identity which
states

∇µRνµ =
1

2
∇ν R (6.4)

and represents four differential equation for ν ∈ {0, 1, 2, 3}. This gives fourteen equations but only ten
unknowns. The Bianchi identity tells that some of the equations in the Einstein field equations are not
really independent of each other, and counting them as ten independent equations is incorrect. Taking
the Einstein equations and the Bianchi identity into account leaves six independent equations.

This situation is similar to electromagnetism where the two inhomogeneous Maxwell equations with ρ
and ~j given are dynamical and correspond to four equations with six unknowns while the two homo-
geneous equations are geometrical and also correspond to four equations with the same six unknowns.
The inhomogeneous equations are Euler-Lagrange equations coming from an action principle and the
homogeneous equations are similar to the Bianchi identity. These are eight equations for six unknowns,
and this is usually resolved by using the homogeneous equations. The electric field can be created as the
gradient of a scalar field with ~E = ~∇Φ, and the magnetic field can be created by the curl of a vector
field with ~B = ~∇× ~A. In the end there are three equations with the four unknowns Φ and ~A from the
potentials. This is fine because the potentials are only defined up to a gauge invariance.

The Bianchi identity reduces the ten equations in Einstein’s equations to six independent equations in
General Relativity, but the metric gµν has still ten unknown functions. Thus there are four remaining
degrees of freedom which represent the freedom to change the four coordinates. This is in analogy
to electromagnetism the gauge freedom of General Relativity, the freedom to redefine the coordinates.
Changing the coordinates does not change the geometry but only the description of the geometry. The
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metric in General Relativity is analogous to the potentials in electromagnetism. To summarize, there is
one unique geometry for a given Tµν , and this geometry can be represented by a family of metrics gµν
related to each other by coordinate transformations. This answers the first question how spacetime is
curved.

The second question is how this affects particles, or how curved spacetime changes physics. The answer
uses a minimal coupling principle. The recipe to figure out how the familiar laws of physics get modified
by curved spacetime is:

1. Start with a law valid in an inertial frame in flat spacetime.
2. Write the law in terms of true four-dimensional tensors.
3. Assert that the tensor form is true in curved spacetime as well.

In practice this means that one starts with a Lorentz invariant theory in terms of tensors and replaces
ηµν → gµν and ∂µ → ∇µ everywhere. These steps allow to generalize any flat theory in flat space to
curved spacetime.

For example the tensorial Maxwell equations in flat spacetime

∂µ F
µν = Jν ∂[µ F

νλ] = 0 where Fνλ = ηνα ηλβ F
αβ

become the Maxwell equations in curved spacetime

∇µ Fµν = Jν ∇[µ F
νλ] = 0 where Fνλ = gνα gλβ F

αβ

in electromagnetism.

For gravity as a second example particles move along straight lines in flat spacetime without gravity as

Xµ(λ) = aµλ+Xµ
0 or

d2Xµ

dλ2
= 0 or

dXν

dλ
∂ν

dXµ

dλ
= 0

(
using

d

dλ
=
dXν

dλ
∂ν

)
and move in curved spacetime as

dXν

dλ
∇ν

dXµ

dλ
= 0 or

dXν

dλ
(∂ν + Γµνλ)

dXµ

dλ
= 0 or

d2Xµ

dλ2
+ Γµνκ

dXν

dλ

dXκ

dλ
= 0

which is the geodesic equation in the form (5.9) and (6.1). The geodesic equation follows therefore from
the above minimal coupling principle.

6.3 The Newtonian Limit

General Relativity is supposed to generalize Newtonian gravity. This means that there should be some
sense in which one can take some limits and should get back Newtonian gravity. The two starting
points are Einstein’s equations (6.3) and the geodesic equation (5.9). Einstein’s equations should tell
how a Newtonian gravitational field is created from mass. In Newtonian physics only mass give raise to
gravitational forces. The gravitational field can be derived from a gravitational potential. The equation
to come out should be ∇2Φ = 4πGρ where Φ is the gravitational potential and ρ is the mass density.
The equation coming from the geodesic equation should be ~a = −~∇Φ because of Newton’s second law
~F = m~a together with m~a = m~g and −~∇Φ = ~g, and because gravity is the only acting force.

The limits are firstly small velocities dXi

dτ �
dX0

dτ , secondly a weak gravitational field gµν = ηµν + hµν
for a small perturbation hµν with ||hµν || � 1, and thirdly a static gravitational field ∂0gµν = 0. As a
consequence of the second limit gµν = ηµν − ηµαηνβhαβ follows to ensure gλµg

µν = δ ν
λ as shown in

gλµg
µν = (ηλµ + hλµ)(ηµν − ηµαηνβhαβ) = ηλµη

µν − ηλµηµαηνβhαβ + ηµνhλµ +O(h2)

= δ ν
λ − δ α

λ ηνβhαβ + ηµνhλµ = δ ν
λ − ηνβhλβ + ηµνhλµ = δ ν

λ

ignoring O(h2) and higher.

The geodesic equation for a massive particle is

d2Xµ

dτ2
+ Γµρσ

dXρ

dτ

dXσ

dτ
= 0 =

d2Xµ

dτ2
+ Γµ00

(
dX0

dτ

)2
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with λ = τ (proper time) and using the first limit. But

Γµ00 =
1

2
gµλ (∂0gλ0 + ∂0g0λ − ∂λg00) = −1

2

(
ηµλ − ηµαηλβhαβ

)
∂λh00 ≈ −

1

2
ηµλ∂λh00

using the third and second limit and ignoring hαβ∂λh00 because the metric changes only slowly. Thus

d2Xµ

dτ2
+ Γµ00

(
dX0

dτ

)2

≈ d2Xµ

dτ2
− 1

2
ηµλ∂λh00

(
dX0

dτ

)2

= 0

represents four equations. For µ = 0 and X0 = t this means

d2t

dτ2
− 1

2
η0λ∂λh00

(
dt

dτ

)2

=
d2t

dτ2
− 1

2
η00∂0h00

(
dt

dτ

)2

=
d2t

dτ2
+

1

2
∂0h00

(
dt

dτ

)2

=
d2t

dτ2
= 0

using η00 = −1 and the third limit. This means that one can take t = τ which is good because in
non-relativistic physics one can adequately parametrize motion with time t. For µ = i this means

d2Xi

dt2
− 1

2
ηiλ∂λh00

(
dt

dt

)2

= ai − 1

2
∂ih00 = 0 ⇒ ai = −∂i

(
−1

2
h00

)
and gives ~a = −~∇Φ with Φ = − 1

2h00.

Writing Einstein’s equations in trace-reverse form by building the trace over both sides gives

gµν
(
Rµν −

1

2
gµν R

)
= gµν

(
8πGTµν

)
and R− 2R = 8πGT or R = −8πGT . It follows

Rµν −
1

2
gµν (−8πGT ) = 8πGTµν or Rµν = 8πG

(
Tµν −

1

2
gµνT

)
(6.5)

which is called the trace-reversed form of Einstein’s equations. In Newtonian physics the only source for
gravity is mass such that the only non-zero term in Tµν is T00 = ρ. It follows

T = gµνTµν = (ηµν − ηµαηνβhαβ)Tµν = (η00 − η0αη0βhαβ)T00 = (−1− h00)ρ

because only η00 = −1 in η0αη0β is not zero. The right-hand side of the trace-reverse Einstein equation
becomes

8πG

(
Tµν −

1

2
gµνT

)
= 8πG

[
T00 −

1

2
g00(−1− h00)ρ

]
= 8πG

[
ρ− 1

2
(−1 + h00)(−1− h00)ρ

]
= 8πG

[
ρ− 1

2
ρ+O(h2)

]
= 4πGρ

and the left-hand side becomes

R00 = Rλ0λ0 = ∂λΓλ00 − ∂0Γλλ0 + ΓλλκΓκ00 − Γλ0κΓκλ0 = −∂0Γ0
00 + ∂iΓ

i
00 = ∂iΓ

i
00

= ∂i

(
1

2
giλ (∂0gλ0 + ∂0g0λ − ∂λg00)

)
= ∂i

(
1

2
gij (−∂jg00)

)
= −1

2
∂ig

ij∂jg00

= −1

2
∂i∂

i(−1 + h00) = −1

2
∇2(h00) = ∇2Φ

using Φ = − 1
2h00 with the same Φ as above.

This shows that ∇2Φ = 4πGρ. There are two points to take from this. One is that when doing General
Relativity and looking for solutions at some point the substitution Φ = − 1

2h00 is made. The other is that
General Relativity does not generalize Special Relativity but Newtonian gravity, and is at the same time
a generalization of any physics to curved spacetime. In contrast to Newtonian physics, General Relativity
is applicable in case of velocities close to the speed of light as Special Relativity, but also in case of strong
and fast changing gravitational fields.
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6.4 Central Forces in the Schwarzschild Metric

The Minkowski spacetime has the line element ds2 = −dt2 + dx2 + dy2 + dz2 in rectangular coordinates
(t, x, y, z). This is the geometry of flat spacetime. The Schwarzschild metric assumes spherical symmetry,
and this is the only assumption which is a safe assumption in astronomy. The Schwarzschild metric

gµν =


−
(
1− 2GM

r

)
0 0 0

0
(
1− 2GM

r

)−1
0 0

0 0 r2 0

0 0 0 r2 sin(θ)
2



gµν =


−
(
1− 2GM

r

)−1
0 0 0

0
(
1− 2GM

r

)
0 0

0 0 1
r2 0

0 0 0 1
r2 sin(θ)2


(6.6)

with the corresponding line element

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dθ2 + r2 sin(θ)
2
dφ2

is diagonal and uses coordinates {t, r, θ, φ} which are called Schwarzschild coordinates. They are not just

spherical polar coordinates extended to spacetime. Often r2dΩ2 is written for r2dθ2 + r2 sin(θ)
2
dφ2 to

simplify the line element by combining the angular dependences.

The geometry of the Schwarzschild metric describes the exterior of spherical source such as stars and
planets. It represents a non-trivial curved geometry such that one can explore the minimal coupling prin-
ciple (with the geodesic) in order to find predictions of General Relativity that differ from the Newtonian
theory. Thus one can test General Relativity.

Central forces in Newtonian mechanics with coordinates (r, θ, φ) have the form ~F = f(r)r̂, and the torque

is ~τ = ~r × ~F = ~0. Because ~τ = d~L/dt = 0 the angular momentum ~L is constant. Since the direction

of ~L is constant, the motion must lie in a plane such that the problem is two-dimensional. One usually
sets θ = π

2 leaving r and φ as coordinates. Also the magnitude L = mr2φ̇ is constant, and this allows to

replace φ̇ by L
mr2 when it seems convenient.

It is assumed that there are only two objects in the system. One is the source with mass M and the
other is the test object with mass m. The total energy of the system is constant and can be written as

Etot =
1

2
m~v · ~v + V (r) =

1

2
m ṙ2 +

1

2
mr2φ̇2 + V (r) =

1

2
m ṙ2 +

1

2
mr2

(
L

mr2

)2

+ V (r)

=
1

2
m ṙ2 +

1

2

L2

mr2
+ V (r) =

1

2
m ṙ2 + Veff(r)

which is a differential equation for a one-dimensional motion in r. In the following the test mass is set
m = 1 as long as m > 0.

Figure 6.1: Newtonian central force

In figure 6.1 Veff(r) = L2

2r2 −
GM
r for the Newtonian gravitational potential is plotted for different values

of L in (a). Depending on Etot and L which are somewhat independent the behavior of the test mass is
different. If the test mass has the lower Etot in (a) then the test mass with L = 1 can move between two
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values of r and moves therefore on an ellipse as shown in (b) while it is stuck with one value of r with
L = 2 and moves therefore on a circle as illustrated in (c). If the test mass comes in from infinity with
the upper Etot in (a) then it stays on the corresponding plotted curve for its value of L until it would
need more energy than it has and therefore returns to infinity. This is scattering for all three values of
L as drawn in (d). The circular and the elliptical orbit are stable in the sense that giving the test mass
a little bit more energy keeps it on an elliptical orbit. The assumption was so far that m > 0. If m = 0
then this massless particle just passes the large mass M unaffected on a straight line as in figure (e).

The same central force can be calculated in the Schwarzschild metric (6.6). To proceed in a manner
analogous to the Newtonian approach note that Kµ

t = (1, 0, 0, 0) and Kµ
φ = (0, 0, 0, 1) are killing vectors

because gµν is independent of t and φ. (Thus one does not have to solve the Killing equation but can
simply use these two vectors.) Using Ktµ = (−(1− 2GM

r ), 0, 0, 0) and Kφµ = (0, 0, 0, r2) by setting θ = π
2

in r2 sin(θ)
2

the conserved “momenta” are

KtµP
µ = Ktµ

dXµ

dλ
= −

(
1− 2GM

r

)
dt

dλ
= E KφµP

µ = Kφµ
dXµ

dλ
= r2 dφ

dλ
= L

since m = 1. The energy E and the angular momentum L are conserved quantities and therefore constant.
The goal is now to get a differential equation in r such that it can be compared with the Newtonian case,
but there is no dr

dλ term.

However, there is another quantity ε with

ε = −gµν
dXµ

dλ

dXν

dλ
⇒ Dε

dλ
= −gµν

[(
D

dλ

dXµ

dλ

)
dXν

dλ
+
dXµ

dλ

(
D

dλ

dXν

dλ

)]
= −gµν

[
0
dXν

dλ
+
dXµ

dλ
0

]
= 0

which is because of (5.9) a conserved quantity for geodesics. But ε can also be written as

ε = −gµν
dXµ

dλ

dXν

dλ
=

(
1− 2GM

r

)(
dt

dλ

)2

−
(

1− 2GM

r

)−1(
dr

dλ

)2

− r2

(
dφ

dλ

)2

=
E2

1− 2GM
r

−
(
dr
dλ

)2
1− 2GM

r

− L2

r2

and be rearranged to

1

2
E2 =

1

2

(
dr

dλ

)2

+
1

2
ε− GM

r
ε+

L2

2r2
− GML2

r3
=

1

2

(
dr

dλ

)2

+ Veff(r)

with an effective potential similar to the Newtonian case. For m > 0 with λ = τ is ε = −UµUµ = +1,
and for m = 0 where ds2 = 0 is ε = 0. The effective potential plotted in figure 6.2 is

Veff(r) =
L2

2r2
− GML2

r3
Veff(r) = −GM

r
+
L2

2r2
− GML2

r3

for massless particles (a) on the left side and for massive particles (b) on the right side.

Figure 6.2: Central force in General Relativity

The difference to the Newtonian case is the term −GML2

r3 in both cases. For m = 0 figure (a) shows
on one hand that gravity affects massless objects and on the other hand that the orbits of the massless

37



objects are unstable. For m > 0 the curve for L = 3 in figure (b) shows an unstable circular orbit and a
stable circular orbit. Thus if L is large enough then there is a stable/unstable pair of circular orbits, but
if L is too small then no circular orbit exists. This fact in the form

Veff(r)

dr

∣∣∣∣
rc

= 0 ⇒ rc± =
L2 ±

√
L4 − 12G2M2L2

2GM

is a minimum radius condition where rc+ is the stable and rc− the unstable solution. The smallest

possible radius is when rmin = rc+ = rc− = L2

2GM = 6GM , and below this value for r there are no stable
circular orbits. So to test General Relativity one can just look for the instability of circular orbits with
r < rmin because Newtonian physics predicts stable circular orbits below this value. Some example values
for rmin = 6GM/c2 which is the value for c 6= 1 show

Massive Object rmin Radius R Comment

Earth ≈ 0.03 m ≈ 6 · 106 m Inside the earth

Sun ≈ 8850 m ≈ 7 · 108 m Inside the sun

White Dwarf ≈ 8850 m ≈ 106 m Inside the star

Neutron Star ≈ 8850 m ≈ 104 m Inside the star

...

Black Hole ≈ 8850 m ≈ 0 m Outside the black hole

that this radius rmin is only for black holes not inside the object with mass M . The event horizon is
at r = 2GM and rmin is well outside despite that the radius of the black hole is approximately zero.
Therefore this would be a test for General Relativity, but so far it is not possible to see whether a stable
orbit is possible below this critical radius.

6.5 The Perihelion Shift

The perihelion shift provides a practical test for General Relativity based on existing
astronomical data. The point of closest approach on an elliptical orbit is called
perihelion. It is known that the perihelion of the planet mercury has moved a bit
after every orbit.

In the Newtonian case, E = 1
2

(
dr
dt

)2 − GM
r + L2

2r2 and L = r2 dφ
dt used in the form dt → r2

L dφ give a
differential equation for r depending on φ(

dr

dφ

)2

− 2GM

L2
r3 + r2 =

2E

L2
r4 ⇒ r(φ) =

L2

GM(1 + e cos(φ))

where e = e(G,M,L) is a constant depending on G, M and L which are all constants. Because
cos(φ+ 2π) = cos(φ) and therefore r(φ+ 2π) = r(φ) the perihelion does not change.

In General Relativity using Veff(r) and a similar rewriting one can show that to leading order

r(φ) =
L2

GM(1 + e cos[(1− α)φ])

where α = 3G2M2

L2 . Thus r(φ+ 2π) 6= r(φ) because cos[(1−α)φ] = cos[(1−α)(φ+ 2π
1−α )]. This is periodic

in 2π
1−α ≈ 2π(1 + α) = 2π + 2πα. The angular shift after one orbit is ∆π = 2πα = 6G2M2π/L2.

To get a numerical value L is needed which one can get by measuring the semi-major
a and the semi-minor b axes of the orbit. The equation of an ellipse can be written
as a function r depending on φ with

r(φ) =
(1− e2)a

1 + e cos(φ)
e =

√
1− b2

a2

and comparing it with the Newtonian result (in leading order)

r(φ) =
L2

GM(1 + e cos(φ))
⇒ L2

GM
= (1− e2)a ⇒ ∆φ =

6πGM

(1− e2)a
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allows to enter the data for the solar system. Note that ∆φ is largest for the smallest a which is
mercury. Using a = 5.79 · 1010 m, e = 0.2056 and T = 88 days gives ∆φ = 43 arcseconds per century,
but the observed value is ∆φ = 5601 arcseconds per century. However taking into account precession
of equinoxes, gravitational pull of other planets and oblateness of the sun gives 5558 arcseconds per
century alone from these effects. Before General Relativity and therefore just with Newtonian physics
these two values have been found. Thus the missing piece for 5558+43 = 5601 was the first experimental
confirmation of General Relativity.

7 Solutions to the Einstein Field Equations and Black Holes

7.1 Exterior Schwarzschild Solution

In a first attempt at finding an exact solution to Einstein’s equations a spherically symmetric solution is
looked for because symmetries simplify mathematical problems such that they become easier than less
symmetric solutions. It is obviously relevant for astrophysical applications because stars, planets and
other objects in astrophysics are spherically symmetric as a good approximation such that one can use
this symmetry for the choice of the coordinates.

Seeking solutions for Gauss’ law ~∇· ~E = ρ
ε0

in electromagnetism as a similar problem becomes also easier
if one is interested in spherically symmetric solutions for the electric field. The goal is to find the electric
field outside a time independent spherical source of charge such that ρ = 0.

Thus ~E = f(r) r̂ is the general form of a solution to ~∇ · ~E = 0 in {r, θ, φ} coordinates. Gauss’ law in
spherical coordinates is

~∇ · ~E =
1

r2

∂

∂r

(
r2 f(r)

)
= 0 ⇒ f(r) =

k

r2
⇒ ~E =

k

r2
r̂

but that does not tell what k is. One integrates ~∇ · ~E = ρ
ε0

over a sphere and gets∫
~∇ · ~E d3x =

∫
ρ

ε0
d3x

∫
ρ

ε0
d3x =

Qenc

ε0

∫
~∇ · ~E d3x = 4πr2E 4πr2E =

Qenc

ε0

E =
Qenc

4πε0r2
k =

Qenc

4πε0
⇒ ~E =

Qenc

4πε0r2
r̂

as the complete solution. This works when ρ is extended in some way (shell or a volume of charge) or
pointlike as long as it is spherically symmetric and it is a solution outside. Of course if ρ is extended
with radius R, one has to find also an interior solution for r < R.

Solving this equation so easily was greatly facilitated by choosing the right coordinates. Of course one
could have started with any coordinate system, but the process would have been much more complicated.
Along the way one might have seen how various coordinate redefinitions could simplify the process and
eventually get to spherical polar coordinates. Once one has a solution in any coordinate system, on can
take it and transfer it to any coordinate system.

To find the Schwarzschild solution of the Einstein field equations it is assumed that one is outside of some
mass distribution and seeks an exterior solution. Because the outside of this mass distribution is free of
sources the energy-momentum tensor is zero. Using the trace-reversed version (6.5) of Einstein’s equation
with Tµν = 0 and therefore also T = 0 gives Rµν = 0 which is the vacuum form of Einstein’s equation.
To solve this gives ten independent functions gµν in coordinates {t, r, θ, φ} which look like spherical polar
coordinates. Spherical symmetry will say a lot about the ten functions to be determined.

One way to impose spherical symmetry is by imagining the spacetime in terms of an S2-foliation. This
means that one builds up the spacetime by stacking concentric two-spheres (like an onion) along a radial
direction r and lined up along t. This has some consequences. If one looks at one of the two-spheres
such that r and t are fixed then the metric should take the form dΩ2 = dθ2 + sin(θ)

2
dφ2. It follows that

gθθ = 1, gφφ = sin(θ), gθφ = 0, and that the rest of the metric components do not depend on θ and φ.
The two-spheres separate the coordinates t and r from the coordinates θ and φ.
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Further if one aligns the two-sphere shells such that radial geodesics go through
the same value of θ and φ on each slice then grθ = 0 and grφ = 0. Additionally,
if one stacks the two-spheres along t such that motion purly along t keeps the
values of θ and φ unchanged then gtθ = 0 and gtφ = 0.

So spherical symmetry eliminates five of the ten unknown functions, combines
two into dΩ and tells that nothing else depends on θ and φ. With this knowledge
the metric can be written in the form

ds2 = −A(r, t) dt2 + 2B(r, t) dr dt+ C(r, t) dr2 +D(r, t) r2 dΩ2

where the factor of two for B(r, t) comes from the fact that this is the only
off-diagonal element in the matrix and appears therefore twice. The goal now
is to find the four functions A(r, t), B(r, t), C(r, t) and D(r, t).

One can now apply the gauge freedom and redefine r → r′ =
√
D(r, t)r which can be inverted to find

r(r′, t) as soon as D(r, t) is known. Thus the line element is now

ds2 = −A(r′, t) dt2 + 2B(r′, t) dr′ dt+ C(r′, t) dr′2 + r′2 dΩ2

where this step is similar to choosing a gauge to simplify solving Maxwell’s equation for φ and ~A.
Assuming this redefinition the primes will be dropped henceforth.

Exploiting this gauge freedom even further with t→ t− f(r, t′) and therefore t = t′ + f(r, t′) changes

dt = dt′ +
∂f

∂r
dr +

∂f

∂t′
dt′ =

∂f

∂r
dr +

(
1 +

∂f

∂t′

)
dt′

dt2 =

(
∂f

∂r

)2

dr2 + 2
∂f

∂r

(
1 +

∂f

∂t′

)
dr dt′ +

(
1 +

∂f

∂t′

)2

dt′2

and gives

ds2 =−A(r, t′)

[(
∂f

∂r

)2

dr2 +

(
1 +

∂f

∂t′

)2

dt′2 + 2
∂f

∂r

(
1 +

∂f

∂t′

)
dr dt′

]

+ 2B(r, t′)

[
∂f

∂r
dr2 +

(
1 +

∂f

∂t′

)
dr dt′

]
+ C(r, t′) dr2 + r2 dΩ2

putting it back into the metric. The function f can be chosen freely and it is selected such that the drdt′

cross-term disappears. This can be done with

2

[
−A(r, t′)

∂f

∂r
+B(r, t′)

](
1 +

∂f

∂t′

)
dr dt′ = 0 ⇒ ∂f

∂r
=
B(r, t′)

A(r, t′)

⇒ f(r, t′) =

∫
B(r, t′)

A(r, t′)
dr + g(t′)

and assuming that t→ t′ has been redefined using just such a function f(r, t′) then

ds2 =−
[
A(r, t′)

(
1 +

∂f

∂t′

)]
dt′2 +

[
−A(r, t′)

(
B(r, t′)

A(r, t′)

)2

+ 2B(r, t′)
B(r, t′)

A(r, t′)
+ C(r, t′)

]
dr2 + r2 dΩ2

becomes the new metric. Dropping the primes again the metric is essentially

ds2 =gtt(r, t) dt
′2 + grr(r, t) dr

2 + r2 dΩ2

with two unknown functions gtt(r, t) and grr(r, t).

This metric is describing a spacetime and one can therefore assume that A(r, t) and C(r, t) are both
positive and therefore gtt(r, t) < 0. It also follows grr(r, t) > 0 without any assumption about B(r, t) and
one can write

gtt(r, t) = −e2α(r,t) grr(r, t) = e2β(r,t)
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for the two functions to enforce these signs. Everything so far has only used spherical symmetry and
gauge choices. Calculating the Ricci tensor using this metric for the Einstein vacuum equation Rµν = 0
with a computer tool results in a set of differential equations and shows that the diagonal elements of
the Ricci tensor and Rtr are the only non-zero values. Further steps must now make sure that also these
elements vanish.

In a first step one can show that Rtr = 2
r
∂β
∂t = 0 such that β(r, t) = β(r). In a second step follows from

Rθθ = e−2β [r(∂β∂r −
∂α
∂r ) − 1] + 1 = 0 and from the first step ∂β

∂t = 0 that −re2β ∂t ∂r α(r, t) = 0 and
therefore α(r, t) = f(r) + g(t).

The resulting metric and the redefinition t→ t′

ds2 = −e2f(r)e2g(t)dt2 + e2β(r)dr2 + r2dΩ2 t→ t′ =

∫
eg(t)dt dt′ = eg(t)dt

lead to the metric

ds2 = −e2f(r)dt′2 + e2β(r)dr2 + r2dΩ2

which is diagonal and where none of the metric components depend on t′. The metric does therefore
not depend on time such that gµν(r, t) = gµν(r). Such a space is called stationary, and this implies the
existence of a timelike Killing vector ∂t. But this space is also invariant under t↔ −t due to the absence
of any dx′ dt cross-terms. This condition makes the space static9. Thus the assumption of a spherically
symmetric source-free solution implies a static geometry.

Returning to Rµν = 0 shows in the next two steps

Rtt = e2(f−β)

[
∂2f

∂r2
+

(
∂f

∂r

)2

− ∂f

∂r

∂β

∂r
+

2

r

∂f

∂r

]
= 0 ⇒ ∂2f

∂r2
+

(
∂f

∂r

)2

− ∂f

∂r

∂β

∂r
+

2

r

∂f

∂r
= 0

Rrr = −∂
2f

∂r2
−
(
∂f

∂r

)2

+
∂f

∂r

∂β

∂r
+

2

r

∂β

∂r
= 0

and adding the two similar expressions gives 2
r (∂f∂r + ∂β

∂r ) = 0 or f(r) = −β(r) + c. The metric becomes

ds2 = −e−2β(r)e2cdt2 + e2β(r)dr2 + r2dΩ2 ds2 = −e−2β(r)dt′2 + e2β(r)dr2 + r2dΩ2

after another redefinition e2cdt2 → dt′2.

The final step leads to

Rθθ = e2f

(
−2r

∂f

∂r
− 1

)
+ 1 = 0 ⇒ ∂

∂r

(
r e2f

)
= 1 ⇒ e2f = e−2β = 1 +

c

r

for the functions f(r) and β(r) and to

ds2 = −
(

1 +
c

r

)
dt2 +

(
1 +

c

r

)−1

dr2 + r2 dΩ2

as the metric.

It is known from the Newtonian limit that g00 = −(1 + 2φ) = −(1− 2GM
r ) because φ = −GMr such that

the Schwarzschild metric in Schwarzschild coordinates is

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2

as used above in (6.6). This is the geometry outside of any spherically symmetric mass such as a planet,
a star or a black hole. The quantity R = 2GM is called the Schwarzschild radius. For r →∞ or M → 0
the metric becomes M4 as expected.

9To understand the difference between static and stationary one can consider a planet. If it is sitting still it creates a
static geometry, and if it is spinning it creates a stationary geometry since t↔ −t reverses the spin.
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7.2 Interior Schwarzschild Solution

To find the solution in the interior of an extended object with spherical symmetry the similarity to
electromagnetism is again explored.

The equation ~∇ · ~E = 0 has been solved for ~Eout = Qtot

4πε0
. Now a solution ~Ein of ~∇ · ~E = ρ

ε0
is needed.

There are various models of charge distribution possible which lead to different solutions. Here the simple
uniform distribution (a uniformly charged ball)

ρ(r) =

{
ρ∗ r ≤ R such that Qtot = 4

3πR
3ρ

0 r > R

is assumed where R is the radius of the spherically symmetric charged object.

To solve for ~Ein one integrates over a spherical volume centered at the origin with r < R∫
~∇ · ~E d3x =

∫
ρ∗
ε0
d3x

∫
~Ein · d~a =

4

3
πr3 ρ∗

ε0
=
Qtot

ε0

r3

R3
4πr2E =

Qtot

ε0

r3

R3

and gets

~Ein =
Qtot

4πε0

r

R3
r̂

which shows that the functional dependence on r is different for ~Ein ∼ r and ~Eout ∼ 1
r2 , and that the

solutions agree on the boundary.

The equivalent task in General Relativity is to solve Einstein’s equations Gµν ≡ Rµν − 1
2Rgµν = 8πGTµν

in a region where Tµν 6= 0 and find a solution gµν that matches the Schwarzschild solution at the boundary.
This is considerably more complicated than Rµν = 0, and trace reversing does not help either. However
using spherical symmetry allows to adopt many of the results from the exterior analysis.

One can start from the metric

ds2 = −e2α(r,t) dt2 + e2β(r,t) dr2 + r2 dΩ2

which was found above without using Rµν = 0. For the exterior solution dependence on time has been
eliminated, but for the interior case this will not generally be the case. Here time independence will be
assumed for the model of the interiors such that time independence can also be assumed for the solution.
This must be checked for consistency at the end of the calculation. Again using a mathematical computer
tool gives non-trivial expressions for the diagonal elements Gµµ and all the others vanish. (Note that a
diagonal metric does not always yield a diagonal Einstein tensor.)

One has to put also information about the source into Tµν which is here assumed to be a perfect fluid
source Tµν = (ρ+p)UµUν+pgµν . Later also an equation of state relating ρ and p is needed. The quantity
Uµ is the overall fluid dual 4-velocity and UµU

µ = −1 = gµνUµUν . Because coordinates are assumed such
that the overall 3-velocity of the source is zero, one can further conclude −1 = g00U0U0 = −e−2αU0U0

and therefore also U0 = eα. The off-diagonal elements of Tµν are zero, and the four diagonal elements of

Tµν are Ttt = e2α(r) ρ(r), Trr = e2β(r) p(r), Tθθ = r2 p(r), Tφφ = r2 sin(θ)
2
p(r) where α(r), β(r), ρ(r),

p(r) are unknown functions.

Motivated by the Schwarzschild solution one can exchange the unknown β(r) for M(r)

e2β(r) =

[
1− 2GM(r)

r

]−1

⇒ M(r) =
r

2G

[
1− e−2β(r)

]
and analyze the Gtt = 8πGTtt component to find r−2[e2α−2β(−1+e2β+2rβ′)] = 8πGeααρ which becomes
dM
dr = 4πr2ρ with β →M . Integrating yields

M(r) = 4π

∫ r

0

ρ(r′) r′2 dr′ M(R) = M = 4π

∫ R

0

ρ(r′) r′2 dr′
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for 0 < r ≤ R with the matching condition for r = R where M(R) = M . Given a density ρ the function
M(r) and therefore also β(r) can be calculated.

To find also α(r) one can consider Grr = 8πGTrr and gets from r−2[1− eαβ + 2rα′] = 8πGe2βp

dα

dr
= α′ =

GM(r) + 4πGr3p

r[r − 2GM(r)]

also with β →M . Given a function for the pressure p the function α can be calculated.

Instead of considering the rest of Einstein’s equations one can instead appeal to energy-momentum
conservation ∇µTµν = 0 which implies (ρ+ p)dαdr = −dpdr from the ν = r term. Combining this with the
above equation for α′ results in

dp

dr
= −

(ρ+ p)
[
GM(r) + 4πGr3p

]
r[r − 2GM(r)]

called the Tolman-Oppenheimer-Volkoff equation. The importance of this equation is that it provides an
equation of state. If one starts with ρ(r) one can firstly find M(r) (and also β(r)), secondly p(r) and
finally α(r).

As an example in analogy to the example from electromagnetism a star with constant density

ρ(r) =

{
ρ∗ r ≤ R
0 r > R

⇒ M(r) =

{
4
3 π r

2 ρ∗ r ≤ R
4
3 π R

2 ρ∗ = M r > R

is used. This allows to calculate the pressure with

dp

dr
= −

(ρ∗ + p)
[
G 4

3 π r
2 ρ∗ + 4πGr3 p

]
r[r − 2G 4

3 π r
2 ρ∗]

⇒ ρ∗
R
√
R− 2GM −

√
R3 − 2GMr2

√
R3 − 2GMr2 − 3R

√
R− 2GM

where r < R is assumed. Finally solving for α(r) gives

eα(r) =
2

3

(
1− 2GM

R

) 1
2

− 1

2

(
1− 2GMr2

R3

) 1
2

where r < R is also assumed. Not only e2β(r) but also e2α(r) =
(
1− 2GM

R

)
matches the Schwarzschild

solution at r = R. Analyzing the p(r) expression shows:

• As to be expected, the pressure p(r) increases as r decreases.
• The pressure p(r) at r = 0 diverges as M → 4

9
R
G . If the mass is less, the pressure does not diverge

but at this value or higher the pressure gets infinite.
• Therefore if the mass with respect to the radius is M > 4

9
R
G then this solution is inconsistent. The

consistency failure comes from the static assumption, and the system must evolve with time above
this value.

7.3 Stellar Collapse

In the time-independent example of a uniform density the pressure goes to infinity for M > 4
9
R
G . The

energy density ρ is responsible for the gravitational attraction and tries to pull everything to the center
while the pressure p pushing outward tries to balance it. At this limit the pressure can no longer keep
up, and the system collapses. This means that the mass M stays the same but the radius R gets smaller
and smaller such that 4

9
R
G also gets smaller and smaller.

To make sure that this situation can really happen, a first question is how realistic is the assumption
of a constant density ρ. Although this is actually a pretty good model for stellar objects, it can be
shown that for more general densities ρ and spherical symmetry, the condition M > 4

9
R
G still leads

to a collapse (Buchdahl’s theorem). The more interesting observation, however, is that for the sun
Msun = 1.98 · 1030 kg and c2 4

9
Rsun

G = 1.38 · 1029 kg such that Msun � 4
9
Rsun

G . The fact that the sun has
not yet collapsed needs therefore an explanation. The analysis was based on a perfect fluid model where
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particles do not interact, but obviously stellar interiors are undergoing nuclear interactions among others
which generate an outward pressure. Taking this into account, the gravitational pressure does not have
to be as large in order to balance the gravitational attraction.

When the star’s nuclear fuel burns out it will begin to collapse. At a certain point in the collapse the
electron-degeneracy pressure due to the Pauli exclusion principle can become large enough to halt collapse
and the star turns into a white dwarf. Chandrasekhar found that for M > 1.4Msun even the electron
degeneracy pressure cannot halt collapse. Eventually electrons and protons fuse to create neutrons and
the neutron degeneracy pressure can halt collapse leaving a neutron star of radius in the order of 10 km.
However if the Oppenheimer-Volkoff limit of 3 ∼ 4Msun is exceeded, even the neutron degeneracy pressure
cannot halt collapse and the result is a black hole.

7.4 Schwarzschild Black Holes

The Schwarzschild metric (6.6) is a spherically symmetric solution to Rµν = 0. Two interesting values
for r are r = 2GM and r = 0. For normal astrophysical objects like stars and planets, but also for any
spherical symmetric object such as a basketball both values are inside of the object where an interior
solution to Einstein’s equations with Tµν 6= 0 are needed. However objects of mass 3 ∼ 4Msun will
eventually collapse to form a black hole. In this case r = 2GM is well outside of the interior, and in fact
one can approach r → 0 as close as one likes and is still outside of the source.

Black holes sometimes get a bad wrap, but it is important to recall that the Schwarzschild solution
describes the exterior geometry of any spherically symmetric source. Black holes do not suck any harder
than comparable mass stars as long as one stays outside. Of course falling into a black hole is problematic,
but so does falling into a star. What makes black holes so interesting is that one does not hit the interior
until r = 0, yet the geometry one encounters along the way does some really interesting things.

The escape velocity in Newtonian gravity can be calculated from the kinetic energy needed to escape to
infinity from a gravitating body. With

Etot =
1

2
mv2

escape −
GMm

r
= 0 vescape =

√
2GM

R

one barely escapes with v → 0 as r → ∞. Note that if R = 2GM then the escape velocity is one which
means speed of light, so no massive object can completely escape to r =∞. However this is not a black
hole yet because of two reasons. On one side is the assumption that the object is launched and that is
the only energy given, but there may be a thruster such that the object may still escape. On the other
side even though one cannot escape, one can still move away from r = 0 while for a black hole there is
only one direction towards r = 0 once one is inside of R = 2GM .

In General Relativity clearly something interesting happens to ds2 when r = 2GM . It looks singular but
the question is whether this means that something in the geometry is becoming singular at r = 2GM .
The answer is no because the situation is like in the space R2 with polar coordinates where gθθ = r−2 also
looks singular but there is no singularity in R2. At r = 0 certainly something bad happens and General
Relativity breaks down, but studying things for r > 0 makes black holes so interesting.

To systematically explore the range 0 < r < 2GM one should remember that the metric is coordinate
dependent and that one should look for invariant statements about the geometry. Here the Ricci tensor
and therefore also the Ricci scalar are zero such that one has to go back to the Riemann curvature tensor.
If nothing strange happens to the curvature at r = 2GM one can look for more appropriate coordinates.
Similar to r = 0 in R2 with polar coordinates, r = 2GM may turn out to be a coordinate singularity
where the metric in this set of coordinates behaves strangely but where nothing singular happens with
the curvature.

In the Schwarzschild metric one finds that RµνρσRµνρσ = 48G2M2

r2 and all other invariants are finite. This
value gets infinite for r → 0 as expected, but it is finite for r = 2GM . Thus while r = 0 represents a
true curvature singularity, r = 2GM is only a coordinate singularity (albeit a very interesting one). Thus
there may be better coordinates.

Going from the Schwarzschild coordinates {t, r, θ, φ} to the so-called Eddington-Finkelstein coordinates
{v, r, θ, φ} where v = t+r+2GM ln

∣∣ r
2GM − 1

∣∣ or t = v−r−2GM ln
∣∣ r

2GM − 1
∣∣ changes the Schwarzschild
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metric (6.6) to

ds2 = −
(

1− 2GM

r

)
dv2 + 2 dv dr + r2 dΩ2

such that r = 2GM is no longer problematic while r = 0 still is, but this was to be expected since it is a
true curvature singularity. The Schwarzschild coordinates are useful for r > 2GM and for 0 < r < 2GM
and the Eddington-Finkelstein coordinates are useful everywhere except at r = 0. In particular they are
more reliable for describing things as they pass through r = 2GM .

One can use the Schwarzschild metric in Eddington-Finkelstein coordinates to figure out what happens
at r = 2GM . To understand black hole geometries one can examine the causal structure using light
cones. Light travels along paths with ds2 = 0. Here one can concentrate on purely radial trajectories
with dθ = dφ = 0. These trajectories are

0 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 0 = −
(

1− 2GM

r

)
dv2 + 2 dv dr

on the left side in Schwarzschild coordinates and on the right side in Eddington-Finkelstein coordinates.
To get a sense of what is going on one can draw the behavior or the light cones in each case on a spacetime
diagram.

In the case of the Schwarzschild coordinates these trajectories become

dr

dt
= ±

(
1− 2GM

r

)−1

→

{
±1 as r →∞
0 as r → 2GM

and that shows far from 2GM a propagation dr
dt at the speed of light which slows down the closer it is

until it comes to rest at 2GM .

In the case of the Eddington-Finkelstein coordinates there are several possible null
trajectories:

(1) dv = 0 ⇒ v = constant = t + r + 2GM ln
∣∣ r

2GM − 1
∣∣: As t increases r must

decrease so these trajectories are ingoing (for r ≶ 2GM).
(2) dr = 0 and r = 2GM : These trajectories are radially stationary and therefore

neither ingoing nor outgoing.
(3) dr

dv = 1
2

(
1− 2GM

r

)
:

dr

dv
=

1

2

(
1− 2GM

r

)
=

{
> 0 r > 2GM (outgoing)

< 0 r < 2GM (ingoing)

For r < 2GM there are only ingoing trajectories, and at r = 2GM there are stationary and ingoing, but
no outgoing trajectories.

Figure 7.1: The light cones in the Schwarzschild metric

The spacetime diagrams in figure 7.1 show in (a) the light cones for the Schwarzschild coordinates and
in (b) for the Eddington-Finkelstein coordinates but with a Schwarzschild compatible modified time
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coordinate t̃ = v − r for which t̃ → t as r → ∞. The light cones are for Schwarzschild coordinates
at the usual 45◦ far from the spherically symmetric massive object as in flat space, but close-up when
approaching r = 2GM . This closing up of the light cones which makes them collapse at r = 2GM as
shown in (a) is a visual signal of the problem with these coordinates. The light cones for the Eddington-
Finkelstein coordinates modified with the t̃ time coordinate only tip more and more over when approaching
r = 0 but pass r = 2GM without problem as illustrated in (b). The left side keeps the 45◦ angle but the
right side becomes 90◦ at r = 2GM and is greater than 90◦ beyond this point. Thus even light can only
go inward beyond r = 2GM which is called the event horizon.

An observer stays at a fixed r assumed to be far away from the event
horizon r = 2GM and another observer follows a geodesic into the event
horizon. The observer falling in sends at equal proper time intervals ∆τ1
a light signal. The observer fixed at r0 sees longer and longer intervals
∆τ2 between these light signals. This illustrates that while the infalling
observer reaches and passes the event horizon by his own internal clock, to
the outside observer the infalling observer never seems to pass through the
event horizon. The infalling observer emits light, and the outside observer
sees this light more and more red-shifted as the infalling observer slows
down and never passes the event horizon. Thus from the perspective of
the outside observer the infalling observer red-shifts away.

This is a more complicated version of what is known from Special Relativ-
ity. If a moving observer sends out light signals at a rate of ∆τ , then to a
“fixed” observer the signals arrive at a slower rate due to time-dilatation.
Here though the effect is arising due to both the geometry and relative
motion.

7.5 Maximally Extended Geometries and Wormholes

Consider the geometry defined by the line element with constant b

ds2 = −dt2 + dr2 + (r2 + b2)
(
dθ2 + sin(θ)

2
dφ2
)

with t ∈ (−∞,∞), r ∈ [0,∞), θ ∈ [0, π], φ ∈ [0, 2π). With b = 0 this is Minkowski space in spherical
polar coordinates. This geometry has the properties:

• There is no t in the line element making it stationary, and there is no cross term dt dxi making it
static.

• For r →∞ the geometry becomes Minkowski space M4 because b as a constant becomes more and
more irrelevant.

• The geometry is S2-foliated meaning that for fixed r and t one sweeps out an S2 sphere by varying
θ and φ.

Because the geometry is static, one can freeze t without loosing much and consider the remaining part
ds2 = dr2+(r2+b2)(dθ2+sin(θ)

2
dφ2) alone which gives a three-dimensional spatial geometry. The human

being is severely handicapped in visualizing three-dimensional geometries. Living in a three-dimensional
space makes it difficult to see other three-dimensional geometries.

The trick is that one collapses the three-dimensional geometry to two dimensions and embeds
the two-dimensional geometry in the three-dimensional space R3. Doing so helps to visualize
the curvature of the two-dimensional surface as bending in three dimensions. (Note that this
is just a trick for visualizing curvature, but the curved space does not need an embedding
in a flat space.) To go from three to two dimensions one can fix θ = π

2 such that the line

element becomes ds2 = dr2 + (r2 + b2) dφ2 and S2 ⇒ S1.

This two-dimensional metric is in a kind of polar type coordinates and looks circularly symmetric because
it only depends on r. To embed it into three dimensions the simplest way is to extend the two-dimensional
circular geometry into three dimensions using cylindrical coordinates {z, ρ, ψ} in R3 with z ∈ (−∞,∞),
ρ ∈ [0,∞), ψ ∈ [0, 2π). To do so the three functions z(r, φ), ρ(r, φ), ψ(r, φ) are needed.
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By aligning the cylindrical coordinates conveniently, one can set ψ(r, φ) = φ. To figure out z(r, φ) and
ρ(r, φ) the line element can be written as

ds2 = dz2 + dρ2 + ρ2 dψ2 =

(
∂z

∂r

)2

dr2 +

(
∂ρ

∂r

)2

dr2 + ρ2 dφ2 =

[(
∂z

∂r

)2

+

(
∂ρ

∂r

)2
]
dr2 + ρ2 dφ2

and comparison with dr2 + (r2 + b2) dφ2 shows that (∂z∂r )2 + (∂ρ∂r )2 = 1 and ρ2 = r2 + b2. This finally
leads to

dρ

dr
=

r√
r2 + b2

(
dz

dr

)2

+
r2

r2 + b2
= 1 ⇒ z(r) = b sinh−1

(r
b

)
z(ρ) = b sinh−1

(√
ρ2

b2
− 1

)
where z(0) = 0 has been chosen. Note that for r > 0 follows z > 0 because r = b sinh

(
z
b

)
.

This space is geodesically incomplete. This means if one picks
a point and an initial direction, then the solutions to the geodesic
equation for this geometry in some cases will terminate after a finite
path length. These cases include any path that moves towards
r = 0. (Note that this does not happen in flat space in polar
coordinates since paths can move through r = 0 continuously.

Figure 7.2: Wormhole metrics

A metric such as this one in which geodesics end is called geodesically incomplete. One can maximally
extend this geometry to make it geodesically complete by allowing r to run to negative numbers by
extending it to r ∈ (−∞,∞) instead of r ∈ [0,∞). From the relation between r and z follows that
r < 0 corresponds to z < 0. This leads to a so-called wormhole metric as shown in figure 7.2. In (a)
the extension to negative values of r and z leads to a geodesically complete metric which asymptotically
goes to M4 for r → ∞ but also for r → −∞. To go from the M4 corresponding to r → ∞ to the M4

corresponding to r → −∞ one has to go through r = 0. This is an example of a wormhole which leads to
two asymptotic distinct spaces connected by a tube or doorway as in (b) and not the kind of wormholes
in science fiction with a shortcut as illustrated in (c).

These are smooth geometries which therefore have no infinite curvature and one might ask whether they
can exist. Unfortunately to solve Gµν = 8πGTµν these geometries require ρ < 0 which only comes from
vacuum energy. The universe does have vacuum energy but it is uniform on large scales, and these
solutions are obviously not. There is non-uniform vacuum energy from quantum fluctuations, but this
might only lead to a quantum sized wormhole.

7.6 Schwarzschild Black Holes in Kruskal Coordinates

Given the Schwarzschild geometry ds2 = −(1 − 2GM
r )dt2 + (1 − 2GM

r )−1dr2 + r2dΩ2 in Schwarzschild
coordinates with r > 2GM one can explore the geodesic completeness with the new set of coordinates

TI =
( r

2GM
− 1
) 1

2

e
r

4GM sinh

(
t

4GM

)
RI =

( r

2GM
− 1
) 1

2

e
r

4GM cosh

(
t

4GM

)
(7.1)
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called Kruskal coordinates. Since t ∈ (−∞,∞) and r > 2GM , the new coordinates are defined for
TI ∈ (−∞,∞) and RI ∈ (0,∞) and

ds2 =
32G3M3

r
e−

r
2GM (−dT 2

I + dR2
I) + r2 dΩ2

defines the geometry. In this form with r and not only RI it is easier to see what happens to the event
horizon.

There are three important aspects of Kruskal coordinates:

• Lines of constant r satisfy −T 2
I + R2

I = (1 − r
2GM ) e

r
2GM and are therefore

half hyperboles because the right-hand side of the equation is negative for
r > 2GM . In particular for r = 2GM this becomes TI = ±RI .

• Lines of constant t satisfy TI = RI tanh
(

t
4GM

)
and are straight lines radiating

from the origin because dTI
dRI

= tanh
(

t
4GM

)
= constant. In particular t→ ±∞

becomes TI → ±RI .
• Light cones open at 45◦ everywhere on a plot with the axes TI and RI since
ds2 = 0 = (−dT 2

I + dR2
I) for radial motion such that dTI

dRI
= ±1.

The geodesics can start at r > 2GM and go below r = 2GM . Therefore the Kruscal
coordinates can be extended

TII =
(

1− r

2GM

) 1
2

e
r

4GM cosh

(
t

4GM

)
RII =

(
1− r

2GM

) 1
2

e
r

4GM sinh

(
t

4GM

)
to r < 2GM . For t ∈ (−∞,∞) and r ∈ (0, 2GM) one gets TII ∈ (−∞,∞) and
RII ∈ (−∞,∞) and

ds2 =
32G3M3

r
e−

r
2GM (−dT 2

II + dR2
II) + r2 dΩ2

defines this geometry which is the same as for TI and RI . Constant r gives T 2
II −R2

II = ( r
2GM − 1) e

r
2GM

and in particular T 2
II − R2

II = 1 for the singularity r = 0. Constant t means TII = RII coth
(

t
4GM

)
with

TII → ±RII for t → ±∞. The light cones are obviously still open at 45◦ because the metric has not
changed.

Outside of r = 2GM as (1) it is possible to either remain outside for ever or
to wander past 2GM . Once at r = 2GM as (2) there is no escape and one
ends inside as (3) where one can only travel towards the singularity r = 0.
There are geodesics which terminate at finite time in the future since they
hit the singularity at r = 0. There is nothing one can or should do about
them. In fact the points of termination of geodesics in more general contexts
is used to define singularities.

There are also geodesics such as those marked with (4) which, when traced backwards in
time, terminate in a finite proper time. The geometry can therefore be still geodesically
extended to region III with TIII = −TII and RIII = −RII and further to region IV with
TIV = −TI and RV I = −RI .

In both new regions ds2 is the same and the light cones are therefore still
open at 45◦. Moreover there is now a singularity in the past with a so-
called white hole out of which things can only escape but never enter. The
backwards extended geodesics terminate on this singularity which is accept-
able. The maximally extended Schwarzschild geometry with all four regions
shows another example of a wormhole geometry. However this wormhole is
non-traversable because getting in between the right and the left side means
ending up at r = 0. Coming out of the while hole one has a choice of where
to go but it is a most irrevocable decision.
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This picture of a black hole relies on t ∈ (−∞,+∞), but there are two problems with the idea of an
eternal black hole. On one hand has the universe a finite age, and on the other hand are astrophysical
black holes born from stellar collapse. Once the surface hits r = 0, there is the usual black hole geometry.
Before that, the details will be governed by the particulars of the interior solution.

The Kruskal diagram with t ∈ (−∞,+∞) is a solution of General Relativity, and
physicists spent and still spend a lot of time exploring these solutions despite the
fact that they are not realistic in our universe. However one can amend the Kruskal
diagram for the more realistic scenario of black holes emerging from stellar collapse.
The bottom part and the left side disappear such that there is no white hole anymore.
On the left side of the T -axis the singularity is growing in mass, but not in size.
The final end point of the collapse is where r = 0 crosses the T -axis and where the
surface of the star becomes zero. The interior is everything below the surface of the
star. The horizon grows from r = 0 to r = 2GM starting before the entire star is
below 2GM .

7.7 Rotating Black Holes, the Kerr Geometry and Penrose Diagrams

One can start with a spherically symmetric object and then let it spin by giving it non-zero angular
momentum L about an axis through its center. The object induces a Schwarzschild metric (6.6) before
it starts spinning and induces a different geometry when it is spinning. This geometry has first been
described by Kerr. A difference to foresee is that spinning at a constant rate will still be time-independent
and therefore stationary but no longer static such that cross-terms dt dxi are to be expected.

If the spin axis is aligned with the poles, then one should expect a dependence on θ
from the squashing of the sphere. However there is still no dependence on φ. Note
also that this is no translation invariance along the axis aligned with the poles, and
it is therefore not cylindrical.

In 1963 Kerr found the solution for what is called the Kerr metric

ds2 =−
(

1− 2GMr

ρ2

)
dt2 − 2GMar sin(θ)

2

ρ2
2 dφ dt+

ρ2

∆
dr2 + ρ2 dθ2

+
sin(θ)

2

ρ2

(
(r2 + a2)2 − a2∆ sin(θ)

2
)
dφ2

(7.2)

in Boyer-Lindquist coordinates {t, r, θ, φ} where a =
Lφ
M , ∆(r) = r2−2GMr+a2, ρ2(r, θ) = r2+a2 cos(θ)

2
.

Some comments:

• For a→ 0 the Kerr metric becomes the Schwarzschild metric and the Boyer-Lindquist coordinates
become the Schwarzschild coordinates.

• For r →∞ with M and a fixed the metric becomes Minkowski spacetime such that asymptotically
it becomes flat spacetime.

• For M → 0 with a fixed such that angular momentum Lφ also goes to zero, the geometry becomes
Minkowski space in oblate spheroidal coordinates. In details this means that

ds2 = −dt2 +
r2 + a2 cos(θ)

2

r2 + a2
dr2 + (r2 + a2 cos(θ)

2
) dθ2 + (r2 + a2 sin(θ)

2
) dφ2

which is just ds2 = −dt2+dx2+dy2+dz2 with x =
√
r2 + a2 sin(θ) cos(φ), x =

√
r2 + a2 sin(θ) sin(φ)

and z = r cos(θ).
• The cross-term dφ dt is expected since the rotation is in φ.

Similar to r = 2GM and r = 0 in the Schwarzschild metric with Schwarzschild coordinates where
r = 2GM turned out to be a coordinate singularity while r = 0 is a real singularity, the values ρ2 = 0
and ∆ = 0 in the denominator need careful analysis.

The first singularity ρ = 0 is a time curvature singularity where the curvature scalar diverges. For
ρ2 = r2 + a2 cos(θ)

2
to become zero, both r = 0 and θ = π

2 are required. This is in contrast with the
Schwarzschild metric where r = 0 makes the geometry diverge for any θ and φ. Before looking at ρ = 0
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it makes sense to analyze r = 0 first alone because it turns out to be rather surprisingly non-trivial. The
Kerr metric becomes

ds2|r=0 = −dt2 + (a cos(θ) dθ)2 + (a sin(θ))2 dφ2 = dr̃2 + r̃2 dφ2

with r̃ = a sin(θ) and θ ∈ [0, π] such that r̃ ∈ [0, a].

So r = 0 is actually a volume in 2 + 1 dimensions which is cylindrical in {t, r̃, φ} while in
the Schwarzschild metric ds2|r=0 = −dt2 is just a line along t. Going back to ρ = 0 adds
the condition θ = π

2 which is at r̃ = a. This is the surface of the cylinder such that the
singularity ρ = 0 is spatially a ring which is then extended in time. Note that the region
inside of the ring is non-singular. This is surprising but it should have been expected
because there is an additional piece of information. The Schwarzschild geometry has
the mass M as the only one parameter which defines the geometry, and r = 0 describes therefore a
single point in space. The Kerr geometry has the angular momentum Lφ in addition to the mass M as
parameter such that there is an additional piece of information. The fact that there is spinning is reflected
in the singularity ρ = 0 which becomes a circle with a radius determined by the angular momentum. The
deformation of the point to a ring is analogous to the deformation of the sphere to the spinning oblate
spheroid.

The second singularity ∆ = 0 is not a curvature singularity but a coordinate singularity. Similarly to the
Schwarzschild case it indicates the presence of the horizon. However ∆(r) = r2 − 2GMr + a2 = 0 as a
quadratic equation leads to r± = GM ±

√
G2M2 − a2 corresponding to two horizons.

The sign of ∆ determines the sign in front of dr2 and determines therefore
the behavior of r. For ∆ > 0, r is spatial and can increase or decrease, but
if ∆ < 0, r is timelike so only moves in one direction because in physics
one can only move into one direction in time. (In the Schwarzschild case r
behaves spacelike outside of the horizon and timelike inside while t behaves
timelike outside and spacelike inside.) Varying a shows:

• For a = 0 the two solutions are r− = 0 and r+ = 2GM and correspond
to Schwarzschild singularity and Schwarzschild horizon, respectively.

• For a2 < G2M2 the geometry is called sub-extremal and r+ > r− > 0.
The singularity marked ρ2 = 0 is now a ring shown in the figure as a
straight line in the center.

• For a2 = G2M2 the black hole with its geometry is called extremal
and r+ = r− = GM .

• For a2 > G2M2 the geometry is called over-extreme and has no hori-
zon. This is just a naked singularity. It will turn out that one cannot
make a that big.

One possibility is to maximally extend the Kerr geometry with adopted Kruskal-type coordinates, but
conformal diagrams also called Penrose diagrams are a more powerful tool. For Minkowski spacetime M4

ds2 = −dt2 + dr2 + r2 dΩ2

with t ∈ (−∞,+∞) and r ∈ [0,∞) one can use coordinates

T = tan−1(t+ r) + tan−1(t− r) R = tan−1(t+ r)− tan−1(t− r)

where 0 ≤ R < π and |T | < π −R such that both coordinates have finite ranges. Then in

ds2 =
1

(cos(T ) + cos(R))
2

(
−dT 2 + dR2 + sin(R)

2
dΩ
)

ds2 =
1

ω(T,R)2
ds̃2

R is behaving like an angle as already hinted by the range 0 ≤ R < π. The fraction in front of ds̃2 is called
a conformal factor which is positive and multiplies the metric, and the metric ds̃2 itself which is finite is
called the conformally related geometry. Because when ds2 = 0 also ds̃2 = 0, light cones in the ds2 = 0
geometry are also light cones in the ds̃2 = 0 geometry. Thus studying light cones in the conformally
related geometry gives the same information as one would get by studying them in the original geometry,
but the conformally related geometry is finite in size and can therefore be drawn completely.
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To visualize it, θ and φ are suppressed and T and R can be drawn as a cylinder.
Because of |T | < π − R as its range, T can vary between −π and +π for R = 0
but can only take the value 0 for R = π. The whole geometry is between the
two curves which can be flattened out. The metric is

ds2 = −dT 2 + dR2

and the space is flat Minkowski spacetime.

Unwrapping gives the Penrose diagram for flat spacetime M4:

i+ = timelike future ∞
i− = timelike past ∞
⇒ All timelike geodesics (m > 0) begin at i− and end at i+.
i0 = spacelike ∞
⇒ All spacelike geodesics end at i0.
J + = future null ∞
J− = past null ∞
⇒ All lightlike geodesics (m = 0) begin at J− and end at J +.
The coordinates t and r are the coordinates in flat spacetime M4

where the spatial part with r is in polar coordinates.

The Penrose diagram for a Schwarzschild black hole is shown in figure 7.3. The right half of (a) looks
on the right side the same as the one for Minkowski spacetime. However r = 0 is no longer a vertical
line but a horizontal line such that there is no escape after crossing r = 2GM . This is called a timelike
singularity because r is timelike behind r = 2GM such that −dr2, and this is why one can only move in
one direction. Curves r constant connect i− and i+, and curves t constant connect i0 and the unlabeled
point on the left side. This diagram is not geodesically complete because there are geodesics whose origin
are unclear, and figure (b) illustrates the maximally complete diagram where the part in (a) is called M
and the part M̃ has been added together with the black and the white hole.

Figure 7.3: Penrose diagram for Schwarzschild black holes

From the white hole one has the choice whether one wants to go to the asymptotic universe M or to the
other asymptotic universe M̃ , but once in either of them there is no way back to the white hole nor to
the other asymptotic universe. From both asymptotic universes there is a way to the black hole but once
one has passed the horizon, there is no way back.

The Penrose diagram for the Kerr geometry corresponding to rotating black holes looks again different.
If the black hole starts spinning but with a2 < G2M2 there appear two horizons with r− and r+ where
r = 0 becomes the horizon r−, and the singularity itself becomes a ring. What is really interesting is
the fact that outside r+ and inside r− one can move towards the singularity or away from it. However
between r− and r+ one can only move toward the horizon r−. When the black hole starts rotating faster
the inner horizon grows until it becomes the same as the outer horizon a a2 = G2M2. The middle region
between the two horizons gets lost.
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For the Kerr geometry the maximally extended solution turns therefore out to be more complicated than
the Schwarzschild case because on one hand it looks, not too surprisingly, different for different choices
of a2 compared to G2M2 and on the other hand it looks, more surprisingly, different for different values
of the coordinate θ. The reason for the dependence on θ is that to be a singularity r = 0 is not sufficient
but also θ = π is necessary.

The case a2 = 0 is the Schwarzschild case and is shown in figure 7.3. The over-extreme case a2 > G2M2

with the naked singularity does not exist and there is no reason to study this case. Thus, the sub-extremal
case 0 < a2 < G2M2 with the two possibilities θ = π

2 and θ 6= π
2 and the extremal case a2 = G2M2 have

to be analyzed.

Figure 7.4: Penrose diagram for rotating Kerr black holes

In figure 7.4 the Penrose diagrams for the different cases are shown. Only the lines of constant r have
been drawn as dashed lines, but not the lines of constant t which are perpendicular to them as in the
case of the Schwarzschild black holes. Light cones are everywhere at 45◦, and in all three cases one starts
in the area where the light cone has been placed.

In the sub-extremal case a2 < G2M2 with θ = π
2 illustrated in (a) there is because ρ2 becomes zero for

r = 0 and θ = π
2 a true singularity at r = 0, but this singularity is spacelike with +dr2 and one can

avoid it. If one is between the two horizons one can only proceed in one direction, but this is different for
the direction one entered the zone between the two horizons. Coming from outside through the horizon
r+ one can only go through the horizon r− to the inside, and similarly coming from inside through the
horizon r− one can only go through the horizon r+ to the outside.

In the sub-extremal case with θ 6= π
2 presented in (b) there is no real singularity at r = 0 because ρ2

does not get zero. Also in this case one does therefore not have to go there, but if one does and passes
the ring singularity one enters a different asymptotic spacetime. In both sub-extremal cases the entire
solution is an infinitely long repeating pattern of these primitive regions.

In the extremal case with a2 = G2M2 the two horizons become the same and one can go inside and exit
the horizon, but one enters a different asymptotic spacetime. Thus one cannot throw something like a
boomerang in and get it back out. One can pass a boundary r = GM only in one direction.

Similarly to the Schwarzschild solution also the Kerr solution only exists in infinite time, but astrophysical
black holes resulting from stellar collapses become existent at some point in time and have not existed
forever. This is not a very realistic solution because an infinite number of asymptotic spacetimes are
stitched together. However, when General Relativity predicts a geometry no matter how distinct it is
from what is physically found in the universe, General Relativity is well behaved in this geometry.

The obvious problem of conservation of energy with several asymptotic spacetimes is not that dramatic.
Observing something coming out of a horizon from the white hole, for example, looks like there comes
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energy in form of mass out of nowhere. One cannot see behind a horizon, however, the size of the horizon
is dependent on M , and M is all the mass in the region behind the horizon. Thus one could observe the
change of the horizon due to the loss of mass. Similarly if some mass passes the horizon of a black hole
this just makes the black hole more massive. With different asymptotic universes the infinite number of
them is all contained in the region behind a horizon. Thus throwing in some energy is never lost because
all of these infinitely many universes are all behind this horizon, and throwing in some energy makes
the horizon bigger forever. This infinite number of universes cannot be arranged as a circle because of
causality. Time can never go back to a point in the past. Since these solutions of the Einstein equations
are theoretical and have nothing to do with the real universe, all these thoughts are theoretical too.

There is a big difference between the way physicists work in General Relativity and in other areas. Usually
they start from a set of differential equations and some initial conditions in order to find what happens in
the future. Particles move and interact while time passes, and one can ask how the situation is after some
time. In General Relativity it is different because the whole future is part of the solution. A geometry
solving Einstein’s equation is complete from the past to the future. Therefore one cannot take two black
holes explored so far and ask what happens if they merge because merging them is not in their future.
In astrophysics, of course, real black holes merge and doing so create gravitational waves.

7.8 Gravitational Waves

There are three essential parts to any kind of radiation but here formulated for gravitational radiation:

1. Find and solve a source free equation.
2. Detection: How do waves influence matter.
3. Creation: How does matter creates waves.

The first point needs a solution of the Einstein equations without sources, the second point means solving
the geodesic equation in the geometry found within the first point, and the third point asks for solving
Einstein’s equations with source. The detection of gravitational radiation took a long time because it is
typically very weak and matter must be very involved to create them. Gravitational waves have a small
amplitude and one can make use of that with some approximation techniques in the first and second
point.

For the first part linearized General Relativity similar to finding the Newtonian limit is used, but this
cannot be not a static approximation because a static approximation does not make sense for waves. One
starts with a flat geometry and some small fluctuations

gµν = ηµν + hµν(X) gµν = ηµν − ηµαηνβhαβ

where hµν(X) is therefore small, and one inserts this metric into the source free Einstein equations Rµν
in trace-reverse form. The Christoffel symbols are

Γραβ =
1

2
ηρσ (∂αhβσ + ∂βhσα − ∂σhαβ)

since ∂ληµν = 0 and ηµαηνβhαβ would be O(h2). The Riemann curvature tensor is

Rρµσν = ∂σΓρνµ − ∂νΓρσµ + ΓρσλΓλνµ − ΓρνλΓλσµ

where the last two terms can be ignored because they are O(h2). The Ricci tensor becomes

Rµν = Rρµρν = ∂ρΓ
ρ
νµ − ∂νΓρρµ

=
1

2
ηρσ [∂ρ∂νhµσ + ∂ρ∂µhσν − ∂ρ∂σhνµ − ∂ν∂ρhµσ − ∂ν∂µhσρ + ∂ν∂σhρµ]

=
1

2
ηρσ [∂ρ∂µhσν − ∂ρ∂σhνµ − ∂ν∂µhσρ + ∂ν∂σhρµ]

and one can define Vµ = ∂ρh
ρ
µ − 1

2∂µh
ρ
ρ and its partial derivative ∂νVµ = ∂ν∂ρh

ρ
µ − 1

2∂ν∂µh
ρ
ρ where

hρρ is the trace. Then with the definition � ≡ ∂ρ∂ρ which is ∂ρ∂
ρ = − ∂2

∂t2 + ~∇2 one gets

Rµν =
1

2
[−�hµν + ∂µVν + ∂νVµ] = 0
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for the Ricci tensor, but one can do better. Gauge freedom allows despite the fact that one has to choose
certain coordinates so that gµν = ηµν + hµν , one can still make coordinate changes which preserve ηµν
but will generally change the form of hµν .

If one transforms to Xµ′ = Xµ + δµ(x) with a small δµ the metric changes to

gµν → gµ′ν′ =
∂Xµ

∂Xµ′
∂Xν

∂Xν′
gµν gµν = ηµν + hµν → gµν = ηµν + hµν − ∂µδν − ∂νδµ

where δµ = ηµνδ
ν . Compare hµν → h′µν = hµν − ∂µδν − ∂νδµ with Aµ → A′µ = Aµ − ∂µΦ in electromag-

netism. A useful aspect of gauge freedom is that the physical degrees of freedom do not change. In this
case the physical curvature Rµνλρ is unchanged such that solutions to Rµν = 0 remain solutions. One can

use here a gauge such that Vµ → V ′µ = ∂αh
α
µ− 1

2∂µh
α
α = 0. From Rµν = − 1

2�hµν = 0 follows �hµν = 0.

One can immediately write down a plane wave solution

hµν = aµν e
iKλX

λ

where one can think of aµν as the polarization and the amplitude of the wave. Feeding this into �hµν =
−KλK

λhµν = 0 gives KλK
λ = 0 because hµν = 0 is a solution but not a very interesting one. Thus

Kλ is a null vector, and one can write it as Kλ = (|~k|,~k) with KλK
λ = −|~k|2 + ~k · ~k = 0. With the

frequency ω = |~k| and the wavelength λ = 2π
ω the wave travels with phase velocity v = λ ω

2π = 1 in the

direction ~k. Thus, the gravitational wave travels with the speed of light as one would expect because the
gravitational fluctuations are massless.

The symmetric 4× 4 matrix aµν describes amplitude and polarization of the wave and can be simplified
because using any δµ such that �δµ = 0 these four functions can be used to make any four components
of hµν vanish identically. Choosing hti = 0 and hµµ = 0 (traceless) or ati = 0 and aµµ = 0 represents
three plus one terms such that the ten degrees of freedom of the symmetric matrix aµν are reduced to
six. With the previous gauge condition Vµ follows

Vt = ∂ρh
ρ
t −

1

2
∂th

ρ
ρ = ∂th

t
t = iωatt e

iKλX
λ

= 0 ⇒ att = 0

Vi = ∂ρh
ρ
i −

1

2
∂ih

ρ
ρ = ∂jh

i
i = ikjaji e

iKλX
λ

= 0 ⇒ Kjaji = 0

where the equation Kjaji = 0 means that the waves are transverse or, in other words, that the spatial

wave vector ~k is perpendicular to the polarization tensor.

If the wave vector is chosen to be Kµ = (ω, 0, 0, ω) with the spatial part ~k = (0, 0, ω) then azi = 0 follows
from the transversality condition. Thus only two independent components of aµν remain which are
axx = −ayy (traceless) and axy = ayx (symmetric). This additional choice is called transverse-traceless
gauge, and

hµν(X) =


0 0 0 0
0 a b 0
0 b −a 0
0 0 0 0

 eiKλX
λ

(7.3)

is the final form of hµν(X). In the linearized theory on gets more general solutions by adding solutions
of this form. This is, however, not possible in the original version of General Relativity which is highly
non-linear. With the solution in (7.3) the part of finding a source free wave equation is done.

The next part is the detection of gravitational waves. With the metric solution gµν = ηµν + hµν(X)
where ηµν is flat spacetime and hµν(X) is defined by (7.3) one can explore how test particles respond to
this time-dependent geometry using the geodesic equation (5.9)

d2Xµ

dλ2
+ Γµαβ

dXα

dλ

dXβ

dλ
= 0 ⇒ dUµ

dτ
+ Γµαβ U

α Uβ = 0 ⇒ dUµ

dτ
= −Γµαβ U

α Uβ

for timelike and Uµ = dXµ

dτ . If the particle is at rest for τ = 0 such that Uµ(0) = (1, 0, 0, 0) then

dUµ

dτ
(0) = −Γµ00 = −1

2
ηρσ(∂0hσ0 + ∂0h0σ − ∂σh00) = 0
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since hti = htt = 0 and this means that if the particle begins at rest, it remains at rest as the wave
passes. However, this is just a statement that the coordinate position of the mass is unchanged because
the particle is at rest and the acceleration is zero. Thus maybe two test masses and the distance between
them show an effect.

Actually, one could have anticipated the need for at least two particles from the equiv-
alence principle. Observing only one particle does not allow to distinguish whether the
lab is in the gravitational field of the earth or being accelerated. Only if one observes
two particles one can detect tidal forces because the two particles come closer because
they move towards the center of the earth while in the case of acceleration they move
on parallel paths and keep the distance they initially had. Detecting curvature is im-
possible with only one test mass because one can always find coordinates in which the
particle is and stays at rest. With two test masses one can see whether the distance
between them remains constant or not.

For one mass at the spatial coordinate (0, 0, 0) and another mass at spatial coordinate (ε, 0, 0) one finds
for the distance∫ √

ds2 =

∫ √
gµνdXµdXν =

∫ ε

0

√
gxxdx

≈
√
gxx(x = 0) ε =

√
1 + hxx(x = 0) ε ≈

[
1 +

1

2
hxx(x = 0)

]
ε =

[
1 + aeiKλX

λ
]
ε

and this varies with time. Despite the fact that one particle remains at x = 0 and the other at x = ε,
the invariant distance between them changes because this value varies with time. This is the difference
between the coordinates and the physical reality. In the chosen coordinates the two masses do not move,
but in reality they move with respect to each other.

To get a better idea of what a gravitational wave does, the values a and b in (7.3) are
chosen such that a is small and b is zero, and the wave travels along the z-axis. This
gives

hµν(X) =


0 0 0 0
0 a 0 0
0 0 −a 0
0 0 0 0

 sin(kz − ωt)

for the real part. A system of masses is set up in the xy-plane at z = 0 such that one mass is at the center
and the others build a ring around it. The gravitational wave comes along the z-axis perpendicular to
the xy-plane. The metric at z = 0 is

ds2|z=0 = −dt2 + [1− a sin(ωt)] dx2 + [1 + a sin(ωt)] dy2

and with X = (1− 1
2a sin(ωt))x and Y = (1 + 1

2a sin(ωt))y the metric becomes

ds2|z=0 = −dt2 + dX2 + dY 2

plus terms of order O(a2). This is now flat Minkowski space, and one can visualize the geometry with
Euclidean intuition. The result is called the plus-polarization (+polarization) presented in figure 7.5 (a).

If one instead chooses the values a and b in (7.3) such that b is small and a is zero, while the wave still
travels along the z-axis, the real part of the perturbation of the metric is

hµν(X) =


0 0 0 0
0 0 b 0
0 b 0 0
0 0 0 0

 sin(kz − ωt)

and corresponds to

ds2|z=0 = −dt2 + dx2 + 2b sin(ωt)dxdy + dy2
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for the distance. With X = x+ 1
2b sin(ωt)y and Y = y + 1

2b sin(ωt)x the metric becomes

ds2|z=0 = −dt2 + dX2 + dY 2

because dX = dx + 1
2b sin(ωt)dy and dY = dy + 1

2b sin(ωt)dx as well as dX2 ≈ dx2 + b sin(ωt)dxdy
and dY 2 ≈ dy2 + b sin(ωt)dxdy. This is again flat Minkowski space, and the result is called the cross-
polarization (×polarization) shown in figure 7.5 (b).

Figure 7.5: Polarization of a gravitational wave

These are the two independent polarization states of the plane gravitational wave. The polarization of
the electromagnetic wave can similarly be decomposed into an x-polarization and a y-polarization. The
difference though is that the electromagnetic wave is invariant if one flips it by 180◦ while the gravitational
wave is invariant if one flips it by 90◦. One can tie that to the fact that the graviton has spin two and
the photon has spin one.

To really detect gravitational waves one could use several such rings of masses because one does not know
the direction in which the wave comes and the ring should be perpendicular to this direction. With a
ruler one could measure how the ring changes. The ruler does not expand and contract the same way
because the above analysis used the geodesic equation for free test particles, and the atoms building
the ruler are not free but also experience electromagnetic binding forces which swamp the gravitational
distortion. Tiny displacement in physics are not measured with rulers but with interferometers.

The LIGO (Laser Interferometer Gravitational-Wave Observatory) uses four kilometer long Michelson
interferometers with mirrors attached to free test masses which are actually hanging but are free to
swing. The accuracy is in the order of 10−21 and the change of length is in the order of 10−18 m. So
much noise has to be eliminated that quantum fluctuations must be filtered out. There are other projects
planned. The LISA (Laser Interferometer Space Antenna) project uses satellites in space with a length
scale for the arms of 5 · 106 km, and the PTR (Pulsar Timing Arrays) will observe irregularities in what
should be periodic signals from pulsars.

The last question related to gravitational waves is how they get created. Thus one has to solve Einstein’s
equations in the presence of sources, and one cannot use small approximations because one wants to see
a signal big enough to be measured. One can create electromagnetic waves by moving charges as in an
antenna to get uniform radiation, but for gravitational wave production there is nothing popping energy
into the system to make it steady state. One has a time-dependent system which produces the radiation.

If two black holes come close then they merge and become a single black hole. Such an event has been
observed by LIGO. Studying realistic gravity wave generation is difficult and will not be shown here,
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but there are two interesting features. One is the possibility of multipole expansion and the other is the
observable signals from the binary mergers of two black holes.

Firstly, just like any other form of radiation, one can take the far field limit and do a multipole expansion
of the power distribution. For both electromagnetic and gravitational waves, the monopole contribution
vanishes because of conservation of charge and mass. The leading electromagnetic term is dipole. For
General Relativity, however, also the dipole term vanishes because of conservation of angular momentum
and the ability to coordinatize to zero the center of mass motion. Thus the lowest term is quadropole.

Secondly, appreciable signals can arise from binary mergers. In particular, when massive
black holes merge they can release gravitational wave energies in the order of the mass
of the sun. To analyze a merger, the problem is often broken up into stages. Everything
could in principle be done numerically, but Einstein’s equations are hard and one would
have to simulate over a large region to get far-field behavior.

Two black holes merge in three phases. The first phase is called inspiral, and one can use
post-Newtonian approximations (linear approximations) to address the two-body problem.
The second phase is called merger, and one uses numerical calculations to handle it. The
third and last phase is called ringdown where the resulting black hole still wobbles before
it settles down to a Kerr black hole, and one uses single-body black hole perturbation
theory for calculations.

The complete profile is often called the chirp characteristic of the event which takes
place in about 0.5 s. The strength of the signal is different for the three phases. One of
the fascinating things about black hole mergers compared to other merger events is the

ringdown signature. Since ringdown only happens for black holes, its observation is a direct observation
of black holes.

7.9 Thermodynamics and Other Features of Black Holes

There are interesting results, some are proven and some are not, but there is non-trivial evidence that
they are true. A set of singularity theorems which were largely developed by Hawking and Penrose in
the sixties belong to them. One might think that a perfect collapse to a point singularity as in the
Schwarzschild case or a ring singularity as in the Kerr case is a feature of the high degree of symmetry
assumed which would probably not occur in realistic cases which are perturbed. The singularity theorems
suggest otherwise. They essentially use the notion of a trapped surface that forms during collapse but
before a singularity has formed. These are similar to event horizons (though technically distinct) and
force the collapsing matter inside of them to decreasing r. The important part is that even though
the physics at singularities cannot be described by General Relativity, the trapped surfaces (and event
horizons for that matter) are, and so General Relativity predicts its own shortcoming.

Another interesting result is the cosmic censorship conjecture which is an unproven but well supported
idea that any singularity that results from collapse will always be hidden behind an event horizon. Some
motivation for this comes from the singularity theorems themselves. This does not completely preclude
the existence of naked singularities because not all singularities come from collapse.

The no-hair theorem states that stationary, asymptotically flat black holes are completely characterized
by their mass m, charge Q and angular momentum J . This is pretty amazing because it says that all
of the complexity of a macroscopic system is essentially lost if it collapses. These quantities are three
numbers and characterize a black hole completely. Actually most black holes are electrically neutral such
that two numbers characterize them.

In the area theorem Hawking showed that the area of an event horizon can never decrease when assuming
the weak energy condition, which is one of the studied constraints on the sources (existing matter) and
essentially requires ρ ≥ 0 for the energy density. For Schwarzschild black holes this theorem is obvious
because adding mass to it increases M and therefore also r = 2GM . For other cases of black holes this
is more difficult to prove.

Usually test particles are so small that they do not change the geometry created by the big sources. For
black holes this is different. There is a pretty good understanding of how to identify conserved quantities
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for test particles by using Killing vectors and 4-momentum, but this is not clear how to define conserved
quantities for a geometry such as Minkowski spacetime, a Schwarzschild black hole or a Kerr black hole.
It is not obvious what is meant by the energy or momentum of a geometry. This is a subtle topic and
there are a couple of approaches useful in different situations.

One approach is to use Komar integrals to define conserved quantities if one has a Killing vector field for
a geometry. If one uses Kµ = (1, 0, 0, 0) for t-independence, one finds that for M4 the energy is E = 0
and for Schwarzschild and Kerr geometry the energy is E = M which is the mass of the black hole. This
is interesting for the Kerr geometry because of the angular momentum which does not contribute to the
energy. Using the Killing vector Rµ = (0, 0, 0, 1) for angular momentum of the Kerr geometry shows that
J is conserved.

The Kerr geometry provides highly non-trivial tests and implications for the preceding
results. Kerr black holes with a2 > G2M2 such that they are over-extreme, for
example, would violate the cosmic censorship conjecture and show a naked singularity
if they existed. Spinning black holes can have a large angular momentum very near G2M2. Thus one can
start from the extremal case a2 = G2M2 and feed it a bit of mass δM with angular momentum δJ which
is, informally speaking, larger than the mass which is possible by increasing the impact parameter or the
speed. This looks like it would push the black hole to over extreme, but it does not. It always scatters
and is never absorbed by the black hole as one can show with rigorous calculations. The over-extremal
case is therefore not possible.

The Kerr geometry has another important feature. Considering an object
at rest outside of the black hole using some thrusters or other means such
that Uµ = (U0, 0, 0, 0) in Boyer-Lindquist coordinates {t, r, θ, φ} but

UµU
µ = g00U

0U0 = −
(

1− 2GMar

ρ2

)
U02

= −1

and this implies that for (1− 2GMar
ρ2 ) < 1 no object can remain at rest. Inside of the black hole not being

able to remain at rest is expected, but this is a region outside which is called ergosphere region. With
ρ2 = r2 + a2 cos(θ)

2
the condition is(

1− 2GMar

r2 + a2 cos(θ)
2

)
< 1 ⇒ r < rergo(θ) = GM +

√
G2M2 − a2 cos(θ)

2

≥ r+ = GM +
√
G2M2 − a2

and the effect is called “frame-dragging”. If being at rest is not possible, one can obviously also not
escape radially out but only to the side.

There is another important aspect of the ergosphere region. Considering a Killing vector Tµ = (1, 0, 0, 0)
for t-independence with

E0 = m0

(
1− 2GMar

ρ2

)
dt

dτ
+
m0 2GMar

ρ2

dφ

dτ

where the first term is positive if r > rergo and negative otherwise while the second term is always positive
because a and dφ have the same sign. Therefore E0 is always positive if r > rergo, but E0 can be positive
or negative for r < rergo. This means that if an object is inside of the ergosphere and has E0 < 0, then it
cannot escape. If an object is outside of rergo with E0 > 0 and enters the ergosphere where it splits into
two pieces. If the two pieces have the energies E1 + E2 = E0 such that E1 > E0 > 0 and consequently
E2 < 0, then the piece with E2 is trapped and the piece with E1 can leave the ergosphere with more
energy then the whole object had initially. The energy of the black hole must therefore have decreased
and lost mass. (Objects in physics usually have positive energy but this is in flat space, and it is because
of the geometry that an object can have negative energy.)

To get this so-called Penrose process to work such that the negative E2 be absorbed and the positive E1

be on a trajectory that leaves the ergosphere, one can show that

J2 ≤
E2

ΩH
ΩH =

a

r2
+ + a2
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where ΩH is the angular velocity of the horizon. Since E2 < 0 the two quantities J2 and ΩH must
have opposite signs, or, in other words, the absorbed object must have angular momentum opposite in
direction of the black hole. This means that the absorption of the piece with E2 reduces the angular
momentum of the black hole by δJBH = J2.

This process requires an ergosphere region. Therefore the limit of this is when JBH = 0 and the Kerr black
hole becomes a Schwarzschild black hole which does not have an ergosphere. The question is whether the
horizon area gets smaller which would not be allowed according to Hawking’s area theorem. The area of
the horizon is

AH =

∫ √
det γ dθ dφ = 4π(r2

+ + a2) = 8πG2M2 + 8π
√
G4M4 −G2M2a2

where γij is the induced metric on the horizon from ds2 with r = r+ and dr = dt = 0 and M2a2 can be
replaced by J2. If one varies δM and δJ one finds

δAµ =
8πGa

ΩH
√
G2M2 − a2

(δM − ΩHδJ)

where the left factor is positive and the right factor can also not be negative because δM is E2 and
δJ ≤ δM

ΩH
. This shows that δAH ≥ 0 and that the area theorem is obeyed.

The fact that AH cannot decrease according to the area theorem resembles the fact that entropy cannot
decrease. Thus one can try to identify the entropy with the area of the horizon. An argument for this
comes from Beckenstein. If a black hole had no observable entropy one could take an external system
with entropy S0 and upon throwing it into the black hole decrease the entropy of the observable universe,
thus violating the second law of thermodynamics. To preserve the second law of thermodynamics, black
holes must admit an observable entropy. One might think to use the mass M of the black hole to correlate
with entropy, but the Penrose process allows M to decrease in certain cases. It is only AH which is a
suitable proxy for entropy. But this already shows something deep. While entropy usually scales with
the volume of a system, in this case it scales with the area. This points to the holographic nature of
gravity, since information from four dimensions is captured by a three-dimensional surface.

Quantifying this idea from the Kerr case gives

δM =
K

8πG
δA+ ΩH δJ with K =

√
G2M2 − a2

2GM(GM +
√
G2M2 − a2)

where K is the so-called surface gravity of the black hole, or roughly how strong the gravitational pull
is near the horizon. Comparing this with dE = T dS − P dV and associating E = M , −P dV = ΩH δJ ,
T dS = K

8πG δA one might be tempted to identify T = K
8πG and dS = δA, but in truth the split is not

obvious.

Hawking considered Quantum Field Theory in the curved geometry near the horizon of a black hole.
He was not doing quantum gravity which is still not completely understood, but he was doing perfectly
well-defined Quantum Field Theory with minimal coupling. Out of the vacuum one can get pairs of
particles such as an electron and a positron which annihilate each other after some time. If this happens
close to the horizon then one of the two particles can go behind the horizon and the other can escape to
infinity. This naturally makes the black hole smaller and smaller, and the horizon shrinks. This does not
contradict the area theorem because of the weak energy condition. Quantum fluctuations have ρ < 0, and
the negative energy is not negative energy because of the geometry. From outside one sees the so-called
Hawking radiation, and black holes can evaporate.

Even if one does not trust Quantum Field Theory in curved space, one could get the same result with
Quantum Field Theory in flat space and then apply the equivalence principle. If one is in flat space at
rest and start accelerating, then one sees a stream of particles coming in the opposite direction of the
acceleration. This so-called Unruh effect is the consequence of uniform acceleration in flat space where
an observer does not experience M4 but a Rindler spacetime. Quantizing a field in terms of Rindler
time is very different than with Minkowski time. The end result is that uniformly accelerated observers
in the vacuum of M4 see a thermal distribution of all allowed particle types dominated by the lowest
mass coming at them with the temperature T = a

2π where a is their acceleration. Using the equivalence

principle allows to replace a by K and find T = K
2π and hence dS = δA

4G and therefore S = A
4G .
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This shows that the temperature of a black hole is T = K
2π , but perhaps the most surprising aspect of

Hawking’s result is that black holes seem to radiate. Conservation of energy implies that the black hole
is losing energy and hence mass in this process. In the Schwarzschild case it is obvious that the horizon
area is decreasing. However, black holes evaporate at a small rate especially compared to any accretion.
For microscopic black holes it leads to them being very short-lived.

This leads to the black hole information paradox. In an otherwise empty universe and given a long enough
time in principle any black hole will completely evaporate. If there are two non-rotating equal masses
such as a male and a female cow which both turn into a black hole. At this stage one can still think
that the information whether it is the male or the female black hole is hidden behind the horizon, but
when both black holes evaporated completely there is only radiation with the same temperature and the
information is lost. Resolving this puzzle will almost certainly require a well-understood quantum theory
of gravity. The holographic principle is a first step.

8 Cosmology

8.1 Friedmann-Robertson-Walker Cosmologies

In the above solutions of Einstein’s equations with or without sources symmetries helped to simplify
the problems. This usually meant idealizing to a single source as for Schwarzschild or Kerr black holes
or exploring asymmetric behavior as for gravitational waves. There is yet another method to get Ein-
stein’s equations to simplify and that is by applying them to the entire universe and smooth over non-
uniformities. This is the starting point of cosmology. To do so, one has to use Tµν 6= 0, must not
assume t-independence because the universe evolves with time, and identify what symmetries are present
to choose appropriate coordinates.

The symmetries of spacetime in the cosmological context are spatial homogeneity which means translation
invariance in space and spatial isotropy which means rotation invariance in space. (These two symmetries
are not the same because living on the surface of a cylinder, for example, exhibits homogeneity but no
isotropy, and living in a Schwarzschild geometry offers isotropy at the center but no homogeneity.)
Together these two symmetries imply that at any point in space one observes rotational invariance and
therefore that there is no center of the universe. It also means that the spatial geometry is maximally
symmetric.

For the spatial coordinates so-called comoving coordinates are used to describe spacetime. They are
adopted to the rest frame of the source, even if it expands or shrinks with time. That is, if the proper
distance between two objects increases because of spacetime expansion, then the coordinate separation
will remain fixed.

Putting things together allows to define the metric as

ds2 = −dt2 +R2(t) γij(u) dui duj (8.1)

with i, j ∈ {1, 2, 3} before one starts solving Einstein’s equations. The factor R2(t) has dimension
length squared, and the factor dσ2 = γij(u) dui duj as the t-independent spatial geometry is therefore
dimensionless. This metric will preserve whatever spatial symmetry is imposed.

An observer using coordinates adopted to a different reference frame (even with constant velocity) will
see a different metric with different symmetries. For example on earth one notices a dipole anisotropy
in the cosmic microwave background due to the motion of the earth relative to the overall rest frame of
the universe. The maximally symmetric spatial geometry leads to the curvature tensor and its derivation
needed in Einstein’s equations

Rijkl = k(γikγjl − γilγjk) ⇒ Rjl = γkiRijkl = 2kγjl ⇒ R = γlj Rjl = 6k

but only for the spatial indices. (In a maximally symmetric geometry one can calculate the curvature
tensor algebraically without the need for Christoffel symbols and so on.) This is actually to be expected
because if the space is maximally symmetric then the curvature must be the same everywhere. Otherwise
the different points in space would have different curvature making them distinguishable.
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One can categorize the possible spatial geometries by the sign of the constant k

k = 0 ⇒ dσ2 = dχ2 + χ2 dΩ2
2 ⇒ R3 flat

k > 0 ⇒ dσ2 = dχ2 + sin(χ)
2
dΩ2

2 ⇒ S3 closed

k < 0 ⇒ dσ2 = dχ2 + sinh(χ)
2
dΩ2

2 ⇒ H3 open

(8.2)

in polar coordinates. Because the three cases do not make it easy to switch between them, one defines

dχ =
dr̄√

1− kr̄2
⇒ dσ2 =

dr̄2

1− kr̄2
+ r̄2 dΩ2

2

with k ∈ {0,−1,+1}. Connecting this back to the three cases in (8.2) gives

k = 0 dχ = dr̄ ⇒ χ = r̄

k = −1 dχ =
dr̄2

1 + r̄2
⇒ χ = sinh−1(r̄)

k = +1 dχ =
dr̄2

1− r̄2
⇒ χ = sin−1(r̄)

and the resulting metric describing spatially homogeneity and isotropy with time dependence becomes

ds2 = −dt2 +R2(t)

[
dr̄2

1− kr̄2
+ r̄2 dΩ2

]
(8.3)

which is called Robertson-Walker metric. With some fixed length R0 and the definitions

a(t) ≡ R(t)

R0
r ≡ R0 r̄ K ≡ k

R2
0

where a(t) is a dimensionless scale factor, r the distance with a dimension, and K the spatial curvature
also with a dimension, the metric (8.3) becomes

ds2 = −dt2 + a(t)2

[
dr2

1−K r2
+ r2 dΩ2

2

]
(8.4)

where the two unknowns a(t) and K have to be determined by Einstein’s equations.

Assuming to be at rest with respect to the overall notion of the sources such that Uµ = (1, 0, 0, 0) the
energy-momentum tensor for a perfect fluid source is

Tµν = (ρ+ p)Uµ Uν + p gµν =


ρ 0 0 0
0
0 gij p
0


where gij 6= γij because gij includes a(t).

Einstein’s equations in trace-reversed form is Rµν = 8πG(Tµν − 1
2gµνT ). Using the Robertson-Walker

metric in the form (8.4) with the perfect fluid energy-momentum tensor gives

−3
ä

a
= 4πG(ρ+ 3p)

ä

a
+ 2

(
ȧ

a

)2

+ 2
K

a2
= 4πG(ρ− p)

for the 00 and the ij term, respectively. By combining them to get rid of the second derivative ä one
obtains the equation (

ȧ

a

)2

=
8πG

3
ρ− K

a2
H2 =

8πG

3
ρ− K

a2
(8.5)

which is called Friedmann equation and where H(t) ≡ ȧ(t)
a(t) is called the Hubble parameter which is

positive for an expanding and negative for a contracting universe. Solutions of this equation are called
Friedmann-Robertson-Walker cosmologies and are very good first approximations of the universe.
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If one sees an object in the universe and asks how fast is it moving then the physical velocity of this
object is

vphysical =
dlphysical

dt
=
d[a(t) lcoord]

dt
= ȧ lcoord =

ȧ

a
lphysical = H lphysical

where lphysical is the physical distance while the coordinate distancde lcoord is a constant because the
coordinates have been chosen this way. The result vphysical = H lphysical that the physical velocity of an
object in the universe seen is proportional to the physical distance, is called Hubble’s law. This means
that the universe is expanding.

Hubble’s law describes relative motion in expanding spacetime. There is
an important difference between an explosion and an expansion. If an
observer is at x = 0 in a one-dimensional space with H = 1 s−1 then the
speed of objects in this expanding space at position x = 1 is v1 = 1, at
position x = 2 is v2 = 2, and at x = −2 is v−2 = 2 but in opposite direction such that vx = x for the
numerical value. After an explosion the speed is the same for any piece independent of its distance to
the observer where the explosion has taken place such that v1 = v2, for example. The expansion has no
center corresponding to homogeneity because the observer at any position sees the same expansion as
the observer at x = 0, but the explosion has a center and therefore no homogeneity because somebody at
x = 1 sees different things happening than the observer at x = 0. The important point is that spacetime
itself is expanding.

The expansion of spacetime is because of gravity, but there are other forces such as electromagnetic forces
which keep things together. These forces keep atoms, for example, at a fix distance. Only things which
are only impacted by gravity but no other forces separate according to Hubble’s law. Thus the ruler to
measure the distance does not expand.

The Friedmann equation contains a(t), ρ(t) and K which are needed to complete solving Einstein’s
equations. The current value of the Hubble parameter H and the value K are measurable by observing
the universe, and ρ is a bit more subtle and has several contributions. Since a(t) depends on t and ρ(t)
depends on t, one can express how ρ varies with a as ρ(a).

Conservation of energy-momentum ∇µ Tµν = 0 or gαν T
µ
α = 0 gives ∇µTµ0 = −dρdt − 3 ȧa (ρ + p) = 0 for

α = 0. From assuming an equation of state of the form p = ω ρ for a constant ω it follows

0 = −ρ̇− 3
ȧ

a
(1 + ω)ρ ⇒ ρ̇

ρ
= −3(1 + ω)

ȧ

a
⇒ ln(ρ) = −3(1 + ω) ln(a) or ρ(t) ∝ a(t)−3(1+ω)

with these cases

• Matter (or dust) satisfies pM = 0 and therefore ω = 0 such that ρM (t) ∝ a−3 follows which expresses
dilution of fixed particle number due to volume expansion.

• Radiation (or highly relativistic matter) satisfies pR = 1
3ρR and therefore ω = 1

3 such that ρR(t) ∝
a−4 which expresses volume dilution a−3 and redshift in the direction of motion a−1.

• Vacuum (Tµν ∝ gµν) satisfies pV = −ρV and therefore ω = −1 such that ρV (t) ∝ a0 which is
constant. (One cannot move relative to a vacuum.)

The result is ρtot = ρM + ρR + ρV , but if one defines ρC ≡ − 3K
8πGa2 for curvature such that ρC ∝ a−2

then Friedmann’s equation becomes

H2 =
8πG

3

∑
i

ρi

for i ∈ {M,R, V,C}. If the universe is at some time dominated by one of these with ρdom ∝ a−n then

H2 =

(
ȧ

a

)2

=
8πG

3
a−n ⇒ da

dt
=

√
8πG

3
a1− 1

2 ⇒ a
1
2−1 da =

√
8πG

3
dt

⇒ a(t) =

(
n

2

√
8πG

3

) 2
n

t
2
n

62



such that

ρdom =


ρM ∝ a−3 ⇒ a(t) ∝ t 2

3

ρR ∝ a−4 ⇒ a(t) ∝ t 1
2

ρC ∝ a−2 ⇒ a(t) ∝ t
ρV ∝ a0 ⇒ a(t) ∝ eHt

where ρV can be derived from da
a = H dt with H =

√
8πG

3 and ln(a) = H t.

If the values of ρi depends differently on a then the expanding universe has been dominated by them
differently at different times. For small a at early times ρR has dominated, for large a at late times ρV
will dominate, and in between first ρM and later ρC dominate. A consequence is that a(t→ 0)→ 0 and
this means that the universe started with a big bang unless ρV dominated at early time which is highly
unlikely.

8.2 The Universe

A Friedmann-Robertson-Walker universe dominated at early times by anything other than vacuum energy
must have begun with a big bang, and this is of course a naked singularity. The cosmic censorship
conjecture does not apply because the big bang is not the result of a collapse.

In order to understand the universe one needs to know more about a(t), K and ρ(t) in (8.5). Certain
quantities can be measured but others such as vacuum energy cannot and must come out of calculations.
Cosmology is in some sense an observable science as opposed to an experimental one. In fact one may
argue that much of General Relativity is the same since one cannot create any significant sources, though
one can experiment by observing test masses. Furthermore, cosmology is the study of the time-varying
history of the universe, and unlike the criterion for any good experiment, it would not repeat itself.

The question is what one can actually observe. Much of the precise knowledge is the byproduct of
astrophysics. The detailed study of stellar models including both nuclear and gravitational effects has
provided a pretty clear prediction of how certain stars should behave such as their luminosity, size, and
emission spectra. Observing these so-called standard candles and distortion from their predicted features
delivered information on the non-trivial geometry through which their light is moving and therefore on
the slope of the universe.

If one can predict an emission spectrum for a standard candle and then observe one that is shifted towards
infrared, one can relate the size of the redshift to the relative sizes of the universe between the time of
the emission long time ago and the observation now. The frequency ωo observed should be related to the
frequency ωe of emission inversely of the way the scale factor observed ao is related to the scale factor of
emission ae because expansion leads to a redshift. Formally this means ωo

ωe
= ae

ao
. The redshift factor z is

defined in terms of the observed and emitted wave lengths λo and λe, respectively, as

z ≡ λo − λe
λe

=
λo
λe
− 1 =

ωe
ωo
− 1 =

ao
ae
− 1 ae =

ao
1 + z

and the observed value is z > 0 and therefore ao > ae showing that the universe is expanding. One can
approximate ae ≈ ao + (te − to)ȧo
The observed current value of the Hubble parameter is Ho = ȧo

ao
. Because f(x2) ≈ f(x1) + (t2− t1)f ′(x1)

for x1 and x2 close together such that ae ≈ ao + (te − to)ȧo and ae
ao
≈ 1 + (te − to)Ho and because

1
1−x ≈ 1 + x one can use

z =
ao
ae
− 1 ≈ 1

1 + (te − to)Ho
− 1 =

1

1− (to − te)Ho
− 1 ≈ (to − te)Ho = dHo

assuming the light traveled at c = 1 such that to − te = d is the distance. Thus if z is known for a
star from the redshift of its spectrum and if one knows how far away this star is, one can determine Ho.
The question remains how one measures the distance d. Before one can measure the distance one should
know what is meant by “distance” in cosmology, and this is by no means a trivial question as scientists
in astrophysics have learned.

63



There are at least five distinct notions of distance:

• The coordinate distance is useful in computations but it is not “physical” in the sense that it has
no physical meaning.

• The equal time distance to a distant object specifying how far it is from the earth now is less directly
tied to observation.

• The observed distance to a distant object indicates its distance at the time of light emission that
is observed now.

• The angular separation is the distance between two distant sources at approximately the same
distance from the earth.

• The angular size of a source is the length across a distant source which does in contrast to angular
separation not expand with time since the object is bound by larger forces.

There is also the luminosity distance defined as

L = 4π d2
L F dL =

√
L

4π F

where F is the measured flux. This distance is useful for standard candles, but for small values of z the
different definitions of distance correlate with each other and give pretty much the same answer. The
luminosity L is known because one knows what a star is made of because one knows the astrophysics
of this type of star. The observed flux F of the star is a quantity that can be directly measured on the
earth.

For low redshift observations one can use d = dL and combine with z measurements determine a value
for Ho as

Ho = 70± 10
km

s Mpc
⇒ dH =

c

Ho
= 4.55 · 106 pc tH =

1

Ho
= 14.4 · 109 years

with 1 pc = 3.086 · 1013 km. The distance dH is the Hubble distance which is effectively the size of the
universe, and tH is then the age of the universe. This is however just the observable universe, but the
real universe might be much larger, and for large redshifts things get much more complicated.

Turning to the other quantities ρ and K to be determined, one defines

Ωi ≡
8πG

3H2
ρi =

ρi
ρcrit

ρcrit ≡
3H2

8πG

for i ∈ {M,R, V,C} where the critical energy density ρcrit is the total energy density needed so that K = 0
and the universe is therefore spatially flat. The condition is if

∑
i Ωi = 1 then K = 0 because the energy

density determines the curvature according to Einstein’s equations. As one makes the measurements at
the current time the respective quantities are Ωio , ρio and Ho. They are numbers between zero and one.

To get ΩMo
one looks at a cluster and uses local gravitational effects to infer mass. Then one uses

density of clusters to extrapolate to large scale. The result is ΩMo
= 0.3 ± 0.1. For ΩRo the cosmic

microwave background arises from relic photons after last scattering once electrons and protons cooled
to form electrically neutral atoms such that the universe became electromagnetically transparent. One
measures a thermal distribution with T = 2.73◦K and hence gets ΩRo ≈ 10−4. Because ρM ∝ a−3 and
ρR ∝ a−4 this result showing ρMo � ρRo makes sense.

For the curvature ΩCo one can predict anisotropies over a length
scale of s from the understanding of the cosmic microwave back-
ground which should not be completely uniform. One can observe
the angular size of the anisotropies, and one can determine the
spatial curvature by comparing these values to s. The observation
indicates that K = 0 such that ΩCo = 0. This means that from∑
i Ωio = ΩMo

+ ΩRo + ΩCo + ΩVo = 1 follows ΩVo = 0.7± 0.1.

8.3 Puzzles in Cosmology

The result ΩMo
= 0.3 is determined from observed gravitational dynamics by measuring rotational

velocities of spiraling galaxies and inferring the mass needed to hold them together. However one can
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also take note of how much matter can be seen or how much luminous matter there is. The amount of
matter one sees in the universe is ΩBo = 0.04±0.02 largely due to baryonic matter (protons, neutrons). To
balance ΩMo the conclusion is that there must be so-called dark matter with ΩDo ≈ 0.26. Dark matter is
obviously non-luminous as the name indicates, and it also most likely does not consist of massive compact
halo objects such as black holes, white dwarfs or neutron stars although one could guess that black holes,
for example, would be good candidates for dark matter. It is also most likely not baryonic because the
program of big bang nucleosynthesis is remarkably good at predicting the relative abundance seen today,
but also easy to screw up by modifying its assumptions. It is also most likely not relativistic and therefore
not hot.

The term dark energy was coined by analogy with dark matter to exhibit the
lack of complete understanding of what makes up ΩVo = 0.7. One expects and
can estimate a contribution from the zero-point energies of quantum fields in
the Standard Model. This contribution acts much like a cosmological constant
term Λ gµν in Einstein’s equations, but there is a coincidence problem which is that ρV is constant while
ρM dilutes with a−3 and today ΩMo

∼ ΩVo . Today ΩMo
should be neglectable compared to ΩVo , but

incidentally they have now nearly the same value. A method to address this is to introduce a slowly
varying scalar field φ into Einstein’s equations with a potential V (φ) that is shallow. The Friedmann
equation becomes φ̈ + 3Hφ̇ + dV

dφ = 0 where the term 3Hφ̇ acts like friction damping the evolution of

φ. In Einstein’s equations Tµν includes −V (φ) gµν , and this is just like Λ gµν if V (φ) is nearly constant.
Such a term acts like a vacuum.

From this follows the so-called cosmological constant problem. With regards to the
value of Λ one can actually get an estimate on its expected value by considering various
contributions. The universe is filled with quantum fields with zero-point energies, and
whenever a symmetry is spontaneously broken by a field taking a non-symmetric expectation value
driven by some effective potential, the height of the potential represents the energy released. The Higgs
mechanism contributes 1044 eV4 and the various zero-point energies of the Standard Model add another
10108 eV4 giving a ρtheory ≈ 10108 eV4, but ΩVo = 0.7 gives a ρobserved ≈ 10−12 eV4 which is 120 orders of
magnitude off.

Also the fact that the universe is comprised almost exclusively of matter with almost no anti-matter
is a puzzling problem known under the name baryon asymmetry. The Standard Model seems to favor
nearly equal production of each. Surprising is that even though this looks like a maximally one-sided
distribution today, if one traces it back to early times in the universe, it actually only amounts to a
difference in matter and anti-matter of one part in a billion. This means that early when the universe
was composed of a lot of matter and anti-matter which as it cooled annihilated away and what one sees
now is that tiny initial difference. However getting a small asymmetry is even harder than getting none
or a maximal one. This is still an open question.

The following three additional puzzles have been more or less addressed by the inflationary model:

1. Flatness problem: Flat geometry with Ω = 1 (K = 0) is an unstable solution. Thus the fact that
we observe Ω = 1 is either very incidental or something is going on that is not known.

2. Horizon problem: In a universe of finite age there can exist regions at certain times which have
never been in causal contact such that they are separated by a cosmological horizon. At the
time the cosmological microwave background was formed, the universe was large enough to have
many causally disconnected regions, but the cosmological microwave background is observed to be
remarkably uniform.

3. Relic (or monopole) problem: Whenever a gauge symmetry with a U(1) subfactor is spontaneously
broken, one would expect the production of at least one topological defect in form of a magnetic
monopole per causally connected domain. But magnetic monopoles have not been observed.

All three of these problems have been solved by supposing that the universe, in its past, underwent some
period of exponential expansion (a ∝ e#t as opposed to power law a ∝ t#) which is called inflation.
During this inflationary growth first proposed by Guth, Ω = 1 actually becomes a stable fixed point and
so inflation does the “fine-tuning” for the humans. If inflation occurred before the cosmic microwave
background was formed then everything could have been causally connected prior and now only appear
to be based on power law growth. If inflation occurred after monopoles were formed, then their density
could be “deflated” to nearly zero such that monopoles are too rare to be observable.
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Appendix A: Detailed Examples of Transformations

Transformation from Cartesian to Spherical Polar Coordinates

This example of a transformation shows how Cartesian coordinates (x, y, z) in flat Euclidean space R3

are transformed into spherical polar coordinates (r, θ, ϕ) which can be specified as

x = r sin(θ) cos(ϕ) y = r sin(θ) sin(ϕ) z = r cos(θ)

expressed for the case that (r, θ, ϕ) coordinates are given. With

gij =

1 0 0
0 1 0
0 0 1

 gij =

1 0 0
0 r2 0

0 0 r2 sin(θ)
2


as the metric in Cartesian coordinates on the left and the metric in spherical polar coordinates on the
right, the line elements are

ds2 = gij dx
i dxj = dx2 + dy2 + dz2 ds2 = gij dx

i dxj = dr2 + r2dθ2 + r2 sin(θ)
2
dϕ2

for Cartesian coordinates on the left and for spherical polar coordinates on the right. It is legitimate to
specify the geometry of the space either by giving the metric or by giving the line element.

Starting from the trivial metric for Cartesian coordinates the metric in spherical polar coordinates can
be determined. The transformation (x, y, z)→ (r, θ, ϕ) changes the metric as

gij → gi′j′ =
∂xi

∂xi′
∂xj

∂xj′
gij

with

∂xi

∂xi′
=


∂x

∂r

∂x

∂θ

∂x

∂ϕ
∂y

∂r

∂y

∂θ

∂y

∂ϕ
∂z

∂r

∂z

∂θ

∂z

∂ϕ

 =

sin(θ) cos(ϕ) r cos(θ) cos(ϕ) −r sin(θ) sin(ϕ)
sin(θ) sin(ϕ) r cos(θ) sin(ϕ) r sin(θ) cos(ϕ)

cos(θ) −r sin(θ) 0



such that

gi′j′ =

(
∂xi

∂xi′

)T
gij

(
∂xj

∂xj′

)
=

 sin(θ) cos(ϕ) sin(θ) sin(ϕ) cos(θ)
r cos(θ) cos(ϕ) r cos(θ) sin(ϕ) −r sin(θ)
−r sin(θ) sin(ϕ) r sin(θ) cos(ϕ) 0


1 0 0

0 1 0
0 0 1


sin(θ) cos(ϕ) r cos(θ) cos(ϕ) −r sin(θ) sin(ϕ)

sin(θ) sin(ϕ) r cos(θ) sin(ϕ) r sin(θ) cos(ϕ)
cos(θ) −r sin(θ) 0


multiplied in matrix notation gives the above metric in spherical polar coordinates.

In R3 there is invariance under rotations meaning that ds2 as well as gij are unchanged by a rotation.
(This is also true in Special Relativity where the invariance is under rotations and boosts.) In this example
the space is obviously flat but the line element and the metric are not invariant under the transformation
(x, y, z) → (r, θ, ϕ). The reason is that this transformation is not a rotation. The definition of SO(3) is
that RT gij R = gij (and the definition of SO(1,3) is that ΛT ηµν Λ = ηµν) but this is exactly what has
been done, and the result was not gij for the coordinates {x, y, z} but a different gij namely the one for
(r, θ, ϕ). The transformation is therefore a coordinate transformation but not a rotation, and this shows
that not all matrices with sine and cosine are rotations.
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Lorentz Transformation in General Coordinates

To demonstrate the relation between arbitrary coordinate transformations in General Relativity and the
Lorentz transformation in Special Relativity

V µ → V µ
′

=
∂Xµ′

∂Xµ
V µ ⇒ V µ → V µ

′
= Λµ

′

µ V
µ

the Lorentz transformation

Λµ
′

µ =


cosh(φ) − sinh(φ) 0 0
− sinh(φ) cosh(φ) 0 0

0 0 cos(θ) − sin(θ)
0 0 sin(θ) cos(θ)


which is a boost in x and a rotation in the yz-plane.

With dXµ → dXµ′ = Λµ
′

µ dX
µ which is in matrix form

cosh(φ) − sinh(φ) 0 0
− sinh(φ) cosh(φ) 0 0

0 0 cos(θ) − sin(θ)
0 0 sin(θ) cos(θ)



dt
dx
dy
dz

 =


cosh(φ) dt− sinh(φ) dx
− sinh(φ) dt+ cosh(φ) dx

cos(θ) dy − sin(θ) dz
sin(θ) dy + cos(θ) dz

 =


dt′

dx′

dy′

dz′


the coordinate transformations are

dt′ = cosh(φ) dt− sinh(φ) dx dy′ = cos(θ) dy − sin(θ) dz

dx′ = − sinh(φ) dt+ cosh(φ) dx dz′ = sin(θ) dy + cos(θ) dz

explicitly written out.

It must be possible to get Λµ
′

µ in the form of Special Relativity from ∂Xµ
′

∂Xµ in the form of General Relativity.
This gives

∂Xµ′

∂Xµ
=



∂t′

∂t

∂t′

∂x

∂t′

∂y

∂t′

∂z
∂x′

∂t

∂x′

∂x

∂x′

∂y

∂x′

∂z
∂y′

∂t

∂y′

∂x

∂y′

∂y

∂y′

∂z
∂z′

∂t

∂z′

∂x

∂z′

∂y

∂z′

∂z


=


cosh(φ) − sinh(φ) 0 0
− sinh(φ) cosh(φ) 0 0

0 0 cos(θ) − sin(θ)
0 0 sin(θ) cos(θ)

 = Λµ
′

µ

as expected.

This result is not surprising because the form of coordinate transformations in General Relativity is
much more general than the form in Special Relativity, but it is good do see in an example that the
transformations in General Relativity includes those of Special Relativity. It also shows that the resulting
matrix is constant and has therefore no dependences on dt, dx, dy, dz.

Appendix B: General Relativity in the Rear View Mirror

The starting point is Special Relativity which is a framework for doing physics that provided the same
value of the speed of light to all observers. This principle following from electrodynamics with Maxwell’s
equations, coupled with the general relativity principle that the laws of physics should appear the same to
all inertial observers, has the consequence that one has to give up the concept of an absolute time where
everyone agrees on exact time sequence and instead adopt a unified spacetime where certain generalized
rotations called boosts mix the spatial and time axes. This allows a set of simultaneous events in one
frame to have spatially dependent time ordering in another frame, and makes it necessary to redefine
causality from simple time-ordering with an absolute time to a new form in terms of light cones in the
four-dimensional spacetime.
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Exploring the relativity principle led to many interesting conclusions:

• The Poincaré group SO(1,3)nT4 with the six Lorentz transformations and the four translations
is the relevant symmetry group and all such transformations are specified by constants and relate
Cartesian to Cartesian coordinate systems.

• All quantities from three dimensions had to be generalized to four dimensions including energy and
momentum which effectively unifies them to a 4-vector.

• The notion of linear algebra with of scalars, vectors and matrices had to be generalized to tensors
including scalars and vectors but also higher-rank tensors.

• The construction of densities led to the conclusion that a four-dimensional energy-momentum den-
sity is given by the energy-momentum tensor.

• Consistent tools were obtained for describing the behavior of massless particles because classical
mechanics cannot handle them.

• The overarching principle from which much of this follows is that Special Relativity is a theory on
the four-dimensional Minkowski spacetime whose metric in Cartesian coordinates is diagonal with
different signs for the time component than for the three spatial components.

As one knows today much more about Special Relativity and Particle Physics than Einstein knew one does
not have to follow Einstein’s logic to generalize Newtonian gravity but can develop General Relativity with
the understanding of the other forces. In hindsight it is known that Minkowski spacetime is a spacetime
in which gravity and therefore also curvature is absent. Special Relativity is the theory of a vanishing
energy-momentum tensor corresponding to the absence of gravity. The matrices for the Poincaré group
are all built out of constants in Minkowski spacetime.

One might wish to generalize this framework to one that accommodates local and therefore position
dependent or even arbitrary coordinate transformations. The consequences are that the metric can vary
depending on position and that the derivative has to be redefined to the covariant derivative taking into
account that also the base vectors change. As a consequence the transformations are no longer built out
of constants. The Christoffel connection in the definition of the covariant derivative plays a similar role
as the gauge fields for other forces.

All of this can be done in Minkowski spacetime, but one can also allow the geometry to become dynamical
by allowing the gauge field in the form of the Christoffel connection to become dynamical. To do so one
introduces a gauge field kinematic term identified by the Riemann curvature tensor. The resulting theory
is that of a dynamical spacetime geometry and allows arbitrary coordinates. It inherits simple dynamical
principles from Minkowski spacetime such as that the straight line for free particles becomes a geodesic
motion in curved geometries. This theory can be applied to describe gravity on any spacetime subject to
the one critical restriction that it be smooth and locally equivalent to Minkowski spacetime which means
manifolds and therefore no singularities. This restriction encodes Einstein’s equivalence principle.

However General Relativity predicts the formation of spacetime geometries which are not smooth mani-
folds such as collapses to black holes. Though General Relativity breaks down at the singularity, but it is
fully applicable outside of it. This means that one can use it to explore the geometry inside and outside
of the horizon which leads to all kinds of bizarre results and outstanding problems. Finally, one can use
this tool to explore the whole universe leading to cosmology.
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