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Abstract

The video channel with the title “Professor M does Science” in YouTube offers a simple step-
by-step but all the same very valuable and rigorous introduction into the world of quantum physics.
This script covers the harmonic oscillator and helps to digest the topic covered by a group of those
videos but is not meant as a replacement for them.

5 The Harmonic Oscillator and its Coherent States

5.1 Classical and Quantum Harmonic Oscillators

Applications of the harmonic oscillator in classical physics ranges from the vibrations of strings to the
behavior of electronic circuits. In the quantum world the harmonic oscillator allows to describe the
motion of atoms in solids and the behavior of light to list just two examples. The quantum harmonic
oscillator is also one of the few problems in quantum physics one knows how to solve exactly.

The defining feature of the harmonic oscillator is that it is a system with a potential energy that depends
quadratically on the amplitude. Its potential energy is usually written as V (x) = 1

2k x
2 with k > 0. In

classical mechanics the force experienced by a particle is given by the negative of the gradient of the
potential such that it is

F = − d

dx
V (x) F =

d

dx

(
1

2
k x2

)
= −k x

for potentials in general on the left side and for the harmonic oscillator specifically on the right side. The
equation F = −k x is called Hooke’s law. Its solution in the form

V (x) =
1

2
mω2 x2 ω =

√
k

m

is a harmonic motion of frequency ω.

In a general potential V (x) with a minimum at x0, a particle at x0 does not move because

F = − d

dx
V (x)

∣∣∣
x0

= 0

and the potential in the environment of x0 can be approximated using a Taylor expansion

V (x) = V (x0) +
dV (x)

dx

∣∣∣
x0

(x− x0) +
1

2

d2V (x)

dx2

∣∣∣
x0

(x− x0)2 +
1

6

d3V (x)

dx3

∣∣∣
x0

(x− x0)3 + ...

in the environment of x0. Because the potential is expanded about the minimum x0 the first order term
dV (x)
dx vanishes. For small enough displacements the dominant term in the expansion will be the lowest

order term. Thus, the potential can be approximated

V (x) ≈ V (x0) +
1

2

d2V (x)

dx2

∣∣∣
x0

(x− x0)2
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close to the minimum x0. This is one reason why the harmonic oscillator is so important. Whatever
arbitrary potential is given the one-dimensional motion of a particle close enough to a local minimum
can be approximated by this quadratic equation where the V (x0) and the x0 in (x− x0)2 can be shifted
away. This approach can be generalized to higher dimensions

V (x1, ..., xN ) ≈ 1

2

N∑
j=1

N∑
k=1

∂2V

∂xj ∂xk

∣∣∣
0
xj xk V (y1, ..., yN ) ≈ 1

2

N∑
j=1

∂2V

∂y2j

∣∣∣
0
y2j

where the potential and the coordinates already have been shifted on the left side and where the coordi-
nates have been transformed on the right side to eliminate the cross-terms. This transformation is always
possible for Hamiltonians with a quadratic potential. Thus, the Hamiltonian can be written in a form
with N decoupled harmonic oscillators. These coordinates yj are called normal modes. To move to the
harmonic oscillator in quantum mechanics the classical total energy E has to be promoted to operators

E =
p2

2m
+

1

2
mω2 x2 Ĥ =

p̂2

2m
+

1

2
mω2 x̂2

as usual for the quantization of classical systems.

5.2 Ladder and Number Operators for the Quantum Harmonic Oscillator

Similarly to the corresponding ladder operators for angular momentum, the lowering operator â and the
raising operator â† for the harmonic oscillator can be defined as the ladder operators

â =
1√
2

(√
mω

~
x̂+ i

1√
m ~ω

p̂

)
â† =

1√
2

(√
mω

~
x̂− i 1√

m ~ω
p̂

)
(5.1)

in terms of the position operator x̂ and the momentum operator p̂ satisfying the commutation relation
[x̂, p̂] = i ~. The position and momentum operator can be written as

x̂ =

√
~

2mω

(
â† + â

)
p̂ = i

√
m ~ω

2

(
â† − â

)
using these ladder operators. The two operators â and â† are not observables because they are not
Hermitian and are each others adjoint. The only non-zero commutation relation is [â, â†] = 1 because

[
â, â†

]
=

[
1√
2

(√
mω

~
x̂+ i

1√
m ~ω

p̂

)
,

1√
2

(√
mω

~
x̂− i 1√

m ~ω
p̂

)]
=

1

2

(
mω

~
[x̂, x̂] +

1

m~ω
[p̂, p̂]− i

~
[x̂, p̂] +

i

~
[p̂, x̂]

)
=

1

2

(
− i
~

(i~) +
i

~
(−i~)

)
= 1

using the commutation relations of x̂ and p̂.

The number operator N̂ is defined as N̂ = â†â. Unlike the two ladder operators the number operator is
Hermitian because N̂† = (â†â)† = â†(â†)† = â†â = N̂ . All the relevant commutation relations between
the ladder operators and the number operator are[

â, â†
]

= 1
[
N̂ , â

]
= −â

[
N̂ , â†

]
= â†

as [N̂ , â] = [â†â, â] = â†[â, â] + [â†, â]â = 0− â = −â shows using [Â, B̂Ĉ] = Â[B̂, Ĉ] + [ÂĈ]B̂.

If N̂ |λ〉 = λ |λ〉 is the eigenvalue equation of the number operator with the eigenstate |λ〉 then â |λ〉 is
also an eigenstate of N̂ with eigenvalue λ− 1 as

N̂ â |λ〉 = âN̂ |λ〉 − â |λ〉 = λ â |λ〉 − â |λ〉 = (λ− 1) â |λ〉

proves using the commutator [N̂ , â] = −â in the form N̂ â = âN̂ − â. This further means that one can
write â |λ〉 = c− |λ− 1〉 such that â applied to an eigenstate |λ〉 of N̂ gives another eigenstate |λ− 1〉 of
N̂ . This is the reason for the name lowering operator. Repeating these calculations for â† shows with
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N̂ |λ〉 = λ |λ〉 that â† |λ〉 is also an eigenstate of N̂ with eigenvalue λ+1. It also follows â† |λ〉 = c+ |λ+ 1〉
showing the reason for calling it a raising operator.

To determine c− and c+ in â |λ〉 = c− |λ− 1〉 and â† |λ〉 = c+ |λ+ 1〉 one can calculate

‖â |λ〉‖2 = 〈λ|â†â|λ〉 = 〈λ|N̂ |λ〉 = λ 〈λ|λ〉 = λ ‖c− |λ− 1〉‖2 = |c−|2 〈λ− 1|λ− 1〉 = |c−|2

such that c− can be chosen as
√
λ ∈ R. This together with similar calculations for â† shows that

â |λ〉 =
√
λ |λ− 1〉 â† |λ〉 =

√
λ+ 1 |λ+ 1〉 (5.2)

are the actions of the ladder operators on eigenstates of N̂ .

Using (5.1) to determine the number operator N̂ gives

N̂ = â†â =
1√
2

(√
mω

~
x̂− i 1√

m ~ω
p̂

)
1√
2

(√
mω

~
x̂+ i

1√
m ~ω

p̂

)
=

1

2

(
mω

~
x̂2 +

1

m ~ω
p̂2 +

i

~
x̂ p̂− i

~
p̂ x̂

)
=

1

2

(
mω

~
x̂2 +

1

m ~ω
p̂2 +

i

~
[x̂, p̂]

)
=

1

2

(
mω

~
x̂2 +

1

m ~ω
p̂2 − 1

)
and

~ω
(
N̂ +

1

2

)
= ~ω

(
mω

2 ~
x̂2 +

1

2m ~ω
p̂2
)

=
1

2m
p̂2 +

1

2
mω2 x̂2 = Ĥ

such that

Ĥ =
1

2m
p̂2 +

1

2
mω2 x̂2 = ~ω

(
N̂ +

1

2

)
= ~ω

(
â†â+

1

2

)
(5.3)

follows for the Hamiltonian.

5.3 Energy Eigenvalues of the Quantum Harmonic Oscillator

The energy eigenvalues Eλ are the solutions of the eigenvalue equation Ĥ |λ〉 = Eλ |λ〉 for the Hamilto-
nian (5.3). These values are real numbers because Ĥ is Hermitian. The calculation

Ĥ |λ〉 = ~ω
(
N̂ +

1

2

)
|λ〉 = Eλ |λ〉 ⇒ N̂ |λ〉 =

(
Eλ
~ω
− 1

2

)
|λ〉 = λ |λ〉 ⇒ λ =

Eλ
~ω
− 1

2

shows that |λ〉 is an eigenstate of Ĥ and N̂ but the eigenvalues are different. The eigenvalue of Ĥ is Eλ,
the eigenvalue of N̂ is λ and

λ =
Eλ
~ω
− 1

2
Eλ = ~ω

(
λ+

1

2

)
is the relation between the two eigenvalues.

So far, the only known property of λ is that it is real because N̂ is Hermitian. With

〈λ|N̂ |λ〉 = λ 〈λ|λ〉 = λ 〈λ|N̂ |λ〉 = 〈λ|â†â|λ〉 = ‖â |λ〉‖2 ≥ 0

one finds as the next property that λ ≥ 0. From (5.2) with â |λ〉 =
√
λ |λ− 1〉 one concludes â |λ〉 = 0 if

λ = 0. It further follows λ ∈ N because otherwise one can apply â in steps of −1 until one reaches a λ
between 0 and 1 such that one cannot apply â again due to the constraint λ ≥ 0. In other words, λmin

must exist and must be the value 0 for which â |λ〉 = 0, and therefore λmin = 0. Because λ must be a
non-negative integer, the eigenvalue equation for N̂ is usually written as N̂ |n〉 = n |n〉 for n = 0, 1, 2, ....
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Consequently, the eigenvalue equation for Ĥ is written as Ĥ |n〉 = En |n〉, and

En = ~ω
(
n+

1

2

)
(5.4)

are the energy eigenvalues where 0, 1, 2, 3, ... are the possible values for n. Therefore, the energy values
for the quantum harmonic oscillator are quantized. The lowest possible value is 1

2~ω, the next is 3
2~ω

and so on. Two neighboring values are separated by ~ω. The fact that the lowest possible energy value
is not zero means that such a quantum particle can never be completely at rest. The value ~ω is called
the quantum of energy, and E0 is called the zero point energy.

The lowering operator â leads from energy eigenstate |n〉 to energy eigenstate |n− 1〉 and removes ~ω
energy. The raising operator â† leads from energy eigenstate |n〉 to energy eigenstate |n+ 1〉 and increases
the energy by ~ω. The number operator N̂ gives the number of energy quanta when applied to an energy
eigenstate, and this is obviously the reason why it is called the number operator.

5.4 Energy Eigenstates of the Quantum Harmonic Oscillator

The raising operator â† acts as

â† |n〉 =
√
n+ 1 |n+ 1〉 â† |n− 1〉 =

√
n |n〉 |n〉 =

1√
n
â† |n− 1〉 =

1√
n(n− 1)

(â†)2 |n− 2〉 = ...

on the energy eigenstates |n〉 such that |n〉 can be written as

|n〉 =
1√
n!

(â†)n |0〉 (5.5)

showing that the application of â† on the ground state n times gives the nth energy eigenstate. The factor
1/
√
n! ensures that |n〉 is normalized if |0〉 was normalized.

The next goal is to write the energy eigenstates |n〉 as wave functions in the position representation. The
lowering operator acting on the ground state

â |0〉 = 0
1√
2

(√
mω

~
x̂+ i

1√
m ~ω

p̂

)
|0〉 = 0

from (5.1) corresponds to(
mω

~
x+

d

dx

)
ψ0(x) = 0 ψ0(x) = 〈x|0〉

in the position representation. As a first-order differential equation one can rearrange it to

1

ψ0(x)

dψ0(x)

dx
= −mω

~
x

∫
1

ψ0(x)

dψ0(x)

dx
dx = −mω

~

∫
x dx

such that one can apply separation of variables and integration. This gives

ln
(
ψ0(x)

)
= −mω

2~
x2 + c ψ0(x) = Ae−mω x2/2~

and shows that the ground state wave function ψ0(x) is a Gaussian satisfying∫ ∞
−∞

e−αx
2

dx =

√
π

α
α =

mω

~

and

1 =

∫ ∞
−∞
|ψ0(x)|2 dx = |A|2

√
π ~
mω

ψ0(x) =
(mω

π ~

)1/4
e−mω x2/2~
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where a phase choice ensured that A is real. Using

|n〉 =
1√
n!

(â†)n |0〉 â† =

√
mω

2~
x−

√
~

2mω

d

dx

one can calculate ψn(x) with

ψn(x) =
1√
n!

(√
mω

2~
−
√

~
2mω

d

dx

)n
ψ0(x) =

1√
2n n!

(mω

π ~

)1/4(√mω

~
−
√

~
mω

d

dx

)n
e−mω x2/2~

from the wave function of the ground state. As an example

ψ1(x) =

√
2mω

~

(mω

π ~

)1/4
x e−mω x2/2~

is the first excited state. Each excited state ψn(x) has the general form of a prefactor times a polynomial

of order n in x times the Gaussian exponential e−mω x2/2~. The solutions are usually written in the form

ψn(x) =
1√

2n n!

(mω

π ~

)1/4
Hn

(√
mω

~
x

)
e−mω x2/2~

where Hn(z) are the Hermite polynomials with definite parity Hn(−z) = (−1)nHn(z). Because the
Gaussian is an even function, the energy eigenfunctions satisfy ψn(−x) = (−1)nψn(x) and have the same
parity as that of the Hermite polynomials.

Figure 1: The first six eigenfunctions for the harmonic oscillator

The first six eigenfunctions of the quantum harmonic oscillator are shown in figure 1 where the first one
is the ground state ψ0(x) and the others the first five excitations. The corresponding probability distri-
butions are presented in figure 2 below. The relation between eigenfunction and probability distribution
is discussed for the ground state ψ0(x) and the first excited state ψ1(x).

The eigenfunction ψ0(x) for the ground state shown as the left
graph in the figure on the right side is proportional to a Gaussian
function and is therefore an even function. The corresponding
probability distribution |ψ0(x)|2 in the right graph illustrates that
the particle is with high probability at the center.

The first excited state wave function ψ1(x) presented as the left
graph in the figure on the left side is an odd function because it
is x times a Gaussian function. The right graph in this figure
shows that the probability to find the particle at the center is
zero, and the highest probabilities are located at the two peaks
symmetrically located on both sides of the vertical axis through
the center.
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In general, the eigenfunctions ψn(x) are odd functions if n is odd and are even functions if n is even. The

probability densities |ψn(x)|2 are always even functions as figure 2 shows for the first six eigenfunctions.
For odd n the probability to find the particle at the center is zero.

Figure 2: The first six probability distributions for the harmonic oscillator

The number of x values with ψn(x) = 0 and the number of peaks

of the probability densities |ψn(x)|2 increase with n. The case for
n = 60 in the figure on the right side illustrates this, and it also
shows that the probability to find the particle is highest at the two
peaks farthest away from the center. This result is consistent with
the classical limit because these peaks correspond to the turning
points of the classical harmonic oscillator where it is momentarily at rest while the center is the location
where it moves fastest.

5.5 The Translation Operator

The position operator x̂ and the momentum operator p̂ do not commute as the well-known case of the
Heisenberg uncertainty principle shows, and their commutation relations are [x̂, p̂] = i ~. The translation
operator already introduced in an earlier chapter but needed here is defined as

T̂ (α) = e−i α p̂/~ α ∈ R (5.6)

and it translates in space by an amount α. The adjoint operator is

T̂ †(α) = ei α p̂
†/~ = ei α p̂/~ = e−i (−α) p̂/~ = T̂ (−α)

using p̂† = p̂. The translation operator is therefore not Hermitian but is unitary as

T̂ †(α)T̂ (α) = ei α p̂/~ e−i α p̂/~ = I T̂ (α)T̂ †(α) = e−i α p̂/~ ei α p̂/~ = I

shows. Because [p̂, p̂] = 0 one can calculate these exponents as if they were just numbers. The translation
operator satisfies therefore T̂ †(α) = T̂−1(α) = T̂ (−α).

The commutator of the translation operator with the position operator is[
x̂, T̂ (α)

]
=
[
x̂, e−i α p̂/~

]
= [x̂, p̂]

(
− i α

~

)
e−i α p̂/~ = i ~

(
− i α

~

)
T̂ (α) = α T̂ (α)

using [x̂, F (p̂)] = [x̂, p̂]F ′(p̂) = i ~F ′(p̂). This gives all that is needed to proof that the T̂ (α) is indeed
the translation operator.

T̂ (α) is a translation operator that translates a ket |x〉 by an amount of α. It is also comprehensible that
T̂−1(α) = T̂ (−α). The translation operator is T̂ (−α) |x〉 = |x− α〉 is 〈x− α| = 〈x| T̂ †(−α) = 〈x| T̂ (α) in
dual space.
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5.6 Hermite Polynomials

The Hermite polynomials Hn(z) are of interest here because the energy eigenfunctions of the quantum
harmonic oscillator are written in terms of Hermite polynomials. There are two conventions where one
is called the probabilist’s convention and the other one is called the physicist’s convention. The one used
here is the second convention. The definition

Hn(z) = (−1)n ez
2 dn

dzn
e−z

2

(5.7)

shows that the Hermite polynomials are defined as the nth derivative of a Gaussian and a prefactor, but
it is not immediately clear why this defines polynomials. Looking at the examples

H0(z) = (−1)0ez
2

e−z
2

= 1 H1(z) = (−1)1ez
2

(−2z)e−z
2

= 2z H2(z) = 4z2 − 2

shows that at least the first three cases are polynomials, and the induction step

dn−1

dzn−1
e−z

2

= (−1)n−1Hn−1(z)e−z
2

dn

dzn
e−z

2

= (−1)n−1
[(

d

dz
Hn−1(z)

)
e−z

2

+Hn−1(z)(−2z)e−z
2

]
= (−1)ne−z

2

[(
2z − d

dz

)
Hn−1(z)

]
(

2z − d

dz

)
Hn−1(z) = (−1)nez

2 dn

dzn
e−z

2

= Hn(z)

proves that Hn(z) is a polynomial if Hn−1(z) is one. Hn−1(z) is a polynomial of degree n − 1 and
z Hn−1(z) makes it a polynomial of degree n.

As shown in figure 3 the first Hermite polynomial H0(z) = 1 is just a constant, the second H1(z) = 2z is
a straight line, and the third H2(z) = 4z2 − 2 is a parabola. Note that the scaling on the vertical axis of

H3(z) = 8z3 − 12z H4(z) = 16z4 − 48z2 + 12 H5 = 32z5 − 160z3 + 120z

in the second row of the figure is different for each graph.

Figure 3: The graphs of the first six Hermite polynomials

All Hermite polynomials have a definite parity as can be shown using induction again. From

Hn(z) =

(
2z − d

dz

)
Hn−1(z) Hn(−z) =

(
2(−z)− d

d(−z)

)
Hn−1(z−) = (−1)

(
2z − d

dz

)
Hn−1(−z)

one can conclude that Hn(z) is an odd function if Hn−1(z) is an even function and vice versa.
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Generating functions allow to encode an infinite sequence such as the family of Hermite polynomials by
just treating them as the coefficients of a power series. Using −t2 + 2tz = z2 − (z − t)2 following from
−(z − t)2 = −z2 + 2tz − t2, one can write

g(z, t) = e−t
2+2tz = ez

2

e−(z−t)
2

=

∞∑
n=0

1

n!

∂n

∂tn
g(z, t)

∣∣∣
t=0

tn =

∞∑
n=0

1

n!

[
(−1)nez

2 ∂n

∂zn
e−z

2

]
tn

=

∞∑
n=0

1

n!
Hn(z) tn =

∞∑
n=0

tn

n!
Hn(z)

because

∂n

∂tn
g(z, t)

∣∣∣
t=0

= ez
2 ∂n

∂tn
e−(z−t)

2
∣∣∣
t=0

= (−1)nez
2 ∂n

∂zn
e−(z−t)

2
∣∣∣
t=0

using ∂
∂tf(z − t) = − ∂

∂z f(z − t). With a function h(x, λ) defined similarly to g(z, t)

h(x, λ) =

∞∑
n=0

λn√
n!
ψn(x) g(z, t) =

∞∑
n=0

tn

n!
Hn(z)

using the eigenfunctions of the harmonic oscillator instead of the Hermite polynomials, one can relate
these two functions. Using (5.5) and 〈x|n〉 = ψn(x) one gets

h(x, λ) =

∞∑
n=0

λn√
n!
〈x|n〉 =

∞∑
n=0

λn

n!
〈x|(â†)n|0〉 =

〈
x

∣∣∣∣∣
( ∞∑
n=0

(λâ†)n

n!

)∣∣∣∣∣ 0
〉

= 〈x|eλ â
†
|0〉

because the infinite sum is the Taylor expansion of an exponential eλ â
†
.

The exponential eλ â
†

can be written using the definition of the raising operator (5.1) in the position
representation as

eλ â
†

= exp

[
λ√
2

(√
mω

~
x̂− i 1√

m ~ω
p̂

)]
but the sum ea+b cannot be turned into ea eb as would be possible for scalars. However, with

Ĉ = Â+ B̂ +
1

2

[
Â, B̂

]
+

1

12

([
Â,
[
Â, B̂

]]
−
[
B̂,
[
Â, B̂

]])
+ ...

called the Baker-Campbell-Hausdorff formula it can be written as eÂ eB̂ = eĈ , and because [x̂, p̂] = i~ is
a scalar only the first commutator remains and all the higher order commutators vanish. Thus,

eλ â
†

= exp

(√
mω

2~
λ x̂

)
exp

(
−i 1√

2m ~ω
λ p̂

)
exp

(
i λ2

4~
[
x̂, p̂
])

= exp

(√
mω

2~
λ x̂

)
exp

(
−i 1√

2m ~ω
λ p̂

)
exp

(
−λ

2

4

)
and using 〈x| x̂ = 〈x|x gives an expression

h(x, λ) = exp

(
−λ

2

4

)
〈x| exp

(√
mω

2~
λ x̂

)
exp

(
−i 1√

2m ~ω
λ p̂

)
|0〉

= exp

(
−λ

2

4

)
exp

(√
mω

2~
λx

)〈
x

∣∣∣∣ exp

(
−i λ√

2m ~ω
p̂

) ∣∣∣∣ 0〉
that looks like the translation operator (5.6) is T̂ (α) = e−i α p̂/~. Inserting 〈x| T̂ (α) = 〈x− α| with the
correct factor eliminates the exponent in

〈x| exp

(
−i λ√

2m ~ω
p̂

)
=

〈
x−

√
~

2mω
λ

∣∣∣∣∣
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such that one gets

h(x, λ) = exp

(
−λ

2

4

)
exp

(√
mω

2~
λx

)〈
x−

√
~

2mω
λ

∣∣∣∣∣ 0
〉

and 〈
x−

√
~

2mω
λ

∣∣∣∣∣ 0
〉

= ψ0

(
x−

√
~

2mω
λ

)
ψ0(x) =

(mω
π~

)1/4
e−mωx

2/2~

with the ground state eigenfunction ψ0(x). Combining these results gives

h(x, λ) =
(mω

π ~

)1/4
exp

(
−λ

2

4

)
exp

(√
mω

2~
λx

)
exp

−mω

2 ~

(
x−

√
~

2mω
λ

)2


such that the three exponentials can be combined into

−λ
2

4
+

√
mω

2~
λx− mω

2 ~

(
x2 −

√
2~
mω

λx+
~

2mω
λ2

)
= −mω

2 ~
x2 + 2

√
mω

2 ~
λx− λ2

2

h(x, λ) =
(mω

π ~

)1/4
exp

(
−mω

2 ~
x2 + 2

√
mω

2 ~
λx− λ2

2

)
because they are scalars. This leads to

z =

√
mω

~
x t =

λ√
2

h(z, t) =
(mω

π ~

)1/4
exp

(
−1

2
z2 + 2 t z − t2

)
=
(mω

π ~

)1/4
e−z

2/2 g(z, t)

by changing variables and using the generating function g(z, t) = e−t
2+2 t z of the Hermite polynomials

introduced above. Combining the infinite sum over the eigenfunctions of the harmonic oscillator and the
generating function for the Hermite polynomials

h(x, λ) =

∞∑
n=0

λn√
n!
ψn(x) g(z, t) =

∞∑
n=0

tn

n!
Hn(z) ⇒

∞∑
n=0

1

n!

(
λ√
2

)2

Hn

(√
mω

~
x

)
finally gives

∞∑
n=0

λn
(

1√
n!
ψn(x)

)
=
(mω

π ~

)1/4
e−mω x2/2~

∞∑
n=0

λn
[

1

n!
√

2n
Hn

(√
mω

~
x

)]
where the terms in the sum must be equal. The energy eigenfunctions of the harmonic oscillator are

ψn(x) =
1√

2n n!

(mω

π ~

)1/4
e−mω x2/2~Hn

(√
mω

~
x

)
(5.8)

in terms of the Hermite polynomials.

5.7 Coherent States of the Quantum Harmonic Oscillator

Coherent states play an important role in quantum mechanics. Two properties are explored where the
first one is how they look like in the energy basis and the second is their time evolution. Coherent states
of the quantum harmonic oscillator are defined as the eigenstates of the lowering operator. They are
the states that most closely resemble the classical motion of a harmonic oscillator. Coherent states (or
sometimes called canonical coherent states) are defined as states |α〉 satisfying

â |α〉 = α |α〉

9



where â is the lowering operator and where α ∈ C because â is not Hermitian. Given â |n〉 =
√
n |n− 1〉

it is surprising that â can have eigenstates at all.

Writing the coherent state in the basis of energy eigenstates lead to

|α〉 =

∞∑
n=0

cn(α) |n〉 with cn(α) = 〈α|n〉

and to

â |α〉 = â

∞∑
n=0

cn(α) |n〉 =

∞∑
n=0

cn(α) â |n〉 =

∞∑
n=1

cn(α)
√
n |n− 1〉 =

∞∑
n=0

cn+1(α)
√
n+ 1 |n〉

where the summation index starting at 1 due to â |n〉 =
√
n |n− 1〉 for n ≥ 1 and â |n〉 = 0 for n = 0 can

be changed to n+ 1. Using the definition of a coherent state â |α〉 = α |α〉 it follows that

∞∑
n=0

cn+1(α)
√
n+ 1 |n〉 = α

∞∑
n=0

cn(α) |n〉 ⇒
∞∑
n=0

[
cn+1(α)

√
n+ 1− α cn(α)

]
|n〉 = 0

and that all the coefficients cn+1(α)
√
n+ 1− α cn(α) must vanish. Thus,

cn+1(α) =
α√
n+ 1

cn(α) =
α√
n+ 1

α√
n
cn−1(α) = ... cn(α) =

α√
n

α√
n− 1

...
α√
2

α√
1
c0(α) =

αn√
n!
c0(α)

follows and gives the coherent state

|α〉 =

∞∑
n=0

cn(α) |n〉 =

∞∑
n=0

αn√
n!
c0(α) |n〉

in the energy basis. Using normalization

1 =

∞∑
n=0

|cn(α)|2 =

∞∑
n=0

|α|2n

n!
|c0(α)|2 = |c0(α)|2

∞∑
n=0

|α|2n

n!
= |c0(α)|2 e|α|

2

shows that |c0(α)|2 = e−|α|
2

. The conventional phase choice makes c0(α) real such that c0(α) = e−|α|
2/2,

and the coherent state becomes

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 (5.9)

as the final expression for the coherent state of the harmonic oscillator in the energy basis.

The resulting |α〉 is an infinite sum over all energy eigenstates and acting with â on it lowers each energy
eigenstate by one but keeps the total infinite sum the same. Another interesting point is that the coherent
states are associated with the Poisson distribution. The probability for an energy eigenvalue is

P (En) = |cn(α)|2 =

∣∣∣∣∣e−|α|2/2
∞∑
n=0

αn√
n!

∣∣∣∣∣
2

=
|α|2n

n!
e−|α|

2

and this is a Poisson distribution. This property has important implications. For example, coherent
states of photons can be split into other independent coherent states in the field of quantum optics, and
this can only happen with Poisson statistics.

The time evolution is governed by the Schrödinger equation, and the quantum harmonic oscillator is
a conservative system because the Hamiltonian Ĥ is independent of time t. The time evolution of a
coherent state ψ(t) with

|ψ(0)〉 = |α0〉 = e−|α0|2/2
∞∑
n=0

αn0√
n!
|n〉

10



at time t = 0 is

|ψ(t)〉 = |α0〉 = e−|α0|2/2
∞∑
n=0

αn0√
n!
e−i En t/~ |n〉 = e−|α0|2/2

∞∑
n=0

αn0√
n!
e−i ~ω(n+

1
2 )t/~ |n〉

= e−i ω t/2 e−|α0|2/2
∞∑
n=0

(α0 e
−i ω t)n√
n!

|n〉

using En = ~ω(n + 1
2 ) from equation (5.4). Setting α = α0 e

−i ω t such that |α|2 = |α0|2 the coherent
state becomes

|ψ(t)〉 = e−i ω t/2 e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 = e−i ω t/2 |α〉

for α = α0 e
−i ω t at time t. This means that if the initial state |ψ(0)〉 = |α0〉 is a coherent state then

|ψ(t)〉 = e−i ω t/2 |α0 e
−i ω t〉 is a global phase factor (that can be ignored since it does not change the

physics) times a new coherent state. In other words, a coherent state stays coherent at all times.

Because the coherent states are eigenstates of the lowering operator, a natural question is whether there
are eigenstates of the raising operator â†. It turns out that the raising operator has no eigenstates. This
can be shown starting from the eigenvalue equation â† |λ〉 = λ |λ〉. Inserting the expansion in terms of
energy eigenstates gives

â† |λ〉 = â†
∞∑
n=0

cn |n〉 =

∞∑
n=0

cn â
† |n〉 =

∞∑
n=0

cn
√
n+ 1 |n+ 1〉 = λ

∞∑
n=0

cn |n〉

and comparing the coefficients shows for |0〉 that 0 = λc0 and therefore c0 = 0 and for |1〉 that c0 = λc1
and therefore c1 = 0 and so on. For |n〉 follows cn−1

√
n = λcn and therefore also cn = 0. The key

difference between lowering and raising operator for these arguments is that there is a lowest energy
eigenstate but no highest energy eigenstate.

5.8 Quasi-Classical States of the Quantum Harmonic Oscillator

Classically, a harmonic oscillator oscillates but the energy eigenstates of a quantum harmonic oscillator
are stationary and do not describe anything like an oscillation. Thus, one can ask the question whether
the quantum harmonic oscillator actually oscillates. The answer is yes but a coherent state is needed to
see those oscillations, and this is why coherent states are also called quasi-classical states.

The classical harmonic oscillator has position, momentum and energy

x(t) = x0 cos(ωt− ϕ) p(t) = mẋ(t) = −mω x0 sin(ωt− ϕ) E(t) =
1

2
mω2 x20

where the phase ϕ depends on the initial conditions, and the energy is because of

E(t) =
1

2m
[p(t)]

2
+

1

2
mω2 [x(t)]

2
=

1

2m
m2 ω2 x20 sin2(ωt− ϕ) +

1

2
mω2 x20 cos2(ωt− ϕ)

=
1

2
mω2 x20

[
sin2(ωt− ϕ) + cos2(ωt− ϕ)

]
=

1

2
mω2 x20

independent of time. The three quantities x(t), p(t) and E(t) = E fully characterize the classical harmonic
oscillator.

Because of Ehrenfest’s theorem the classical world and the quantum world can be connected using the
expectation values of position and momentum. The expectation value of the position operator in an
energy eigenstate |n〉 can be written as

〈x̂〉n = 〈n|
√

~
2mω

(â+ â†)|n〉 = 0

11



using (5.1) and

〈n|â|n〉 =
√
n 〈n|n− 1〉 = 0 〈n|â†|n〉 = 0

because the energy eigenstates build an orthonormal basis. As energy eigenstates are stationary states
their expectation value is time independent. With a similar argument one can also show 〈p̂〉n = 0. For

the Hamiltonian one gets the corresponding eigenvalue 〈Ĥ〉n (t) = ~ω(n+ 1
2 ). Thus, the energy 〈Ĥ〉n (t)

and the expectation values of 〈x̂〉n (t) and 〈p̂〉n (t) are all constant for the quantum harmonic oscillator
while only the energy E(t) is constant for the classical harmonic oscillator. Thus, energy eigenstates do
not show an oscillation that a classical harmonic oscillator exhibits.

Coherent states (5.9) are infinite linear combinations of energy eigenstates. To explore the connection
between coherent states and the classical harmonic oscillator (with the reason why coherent states are also
called quasi-classical states) one needs to evaluate the expectation values of the position, the momentum
and the energy operators in a coherent state. To calculate them some other expectation values have to
be determined first.

The eigenvalue equation for the lowering operator is â |α〉 = α |α〉 with 〈α| â† = 〈α|α∗ in the dual space,
and the expectation value of â in state |α〉 is 〈α|â|α〉 = α and 〈α|ân|α〉 = αn using the eigenvalue equation
of the lowering operator. The expectation value of â† in state |α〉 is 〈α|â†|α〉 = α∗ and 〈α|(â†)n|α〉 = (α∗)n

using the dual eigenvalue equation of the lowering operator. The expectation value 〈α|â† â|α〉 = |α|2

follows similarly. For the expectation value 〈α|â â†|α〉 = 1 + |α|2 the relation [â, â†] = 1 with the
consequence â â† = 1 + â† â can be used.

The expectation value of the position operator and its square with respect to a coherent state is

〈x̂〉α = 〈α|
√

~
2mω

(â+ â†)|α〉 =

√
~

2mω

(
〈α|â|α〉+ 〈α|â†|α〉

)
=

√
~

2mω
(α+ α∗) =

√
~
mω

Re(α)

〈x̂2〉α = 〈α| ~
2mω

(â+ â†)|α〉 =
~

2mω

(
〈α|â2|α〉+ 〈α|(â†)2|α〉+ 〈α|â â†|α〉+ 〈α|â† â|α〉

)
=

~
2mω

(
α2 + (α∗)2 + 2αα∗ + 1

)
=

~
2mω

[(
α+ α∗

)2
+ 1
]

and the root mean square deviation is

∆x̂α =

√
〈x̂2〉α + 〈x̂〉2α =

√
~

2mω

[(
α+ α∗

)2
+ 1
]
− ~

2mω

(
α+ α∗

)2
=

√
~

2mω

but surprisingly does not depend on α.

To determine the time dependence of the expectation value of the position operator, the initial state is
assumed to be |ψ(0)〉 = |α0〉 where α0 = |α0| eiϕ ∈ C and the position is

|ψ(t)〉 = e−iωt/2 |α〉 α = α0 e
−iωt = |α0| e−i(ωt−ϕ)

at time t. The time dependent expectation value of the position operator becomes

〈x̂〉α (t) =

√
~

2mω

(
|α0| e−i(ωt−ϕ) + |α0| ei(ωt−ϕ)

)
=

√
2~
mω
|α0| cos(ωt− ϕ)

using eiδ + e−iδ = 2 cos(δ).

A similar calculation for the expectation value of the momentum operator and its square with the root
mean square deviation gives

〈p̂〉α = −i
√
m~ω

2
(α− α∗) =

√
2m~ω Im(α) 〈p̂2〉α =

m~ω
2

[
1−

(
α− α∗

)2]
∆p̂α =

√
m~ω

2

where ∆p̂α is also independent of α. With |ψ(0)〉 = |α0〉, |ψ(t)〉 = e−iωt/2 |α〉 and α = |α0| e−i(ωt−ϕ) the
time dependence of the expectation value of the momentum operator becomes

〈p̂〉α (t) = −
√

2m~ω |α0| sin(ωt− ϕ)
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using eiδ − e−iδ = 2i sin(δ). One gets further

〈Ĥ〉α = ~ω
(
|α|2 +

1

2

)
〈Ĥ2〉α = ~2ω2

(
|α|4 + 2|α|2 +

1

4

)
∆Ĥα = ~ω|α|

〈Ĥ〉α (t) = ~ω
(
|α0|2 +

1

2

)
for the Hamiltonian showing that 〈Ĥ〉α (t) is time independent.

Comparing the classical with this coherent case exhibits the similarities

x(t) = x0 cos(ωt− ϕ) 〈x̂〉α (t) =

√
2~
mω
|α0| cos(ωt− ϕ)

p(t) = mẋ(t) = −mω x0 sin(ωt− ϕ) 〈p̂〉α (t) = −
√

2m~ω |α0| sin(ωt− ϕ)

E(t) =
1

2
mω2 x20 〈Ĥ〉α (t) = ~ω

(
|α0|2 +

1

2

)
and shows that the quantum particle oscillates when in a coherent state. If one identifies x0 such that

x0 =

√
2~
mω
|α0| ⇒ x(t) = 〈x̂〉α (t) and p(t) = 〈p̂〉α (t)

then the time evolution of position and momentum of the classical motion is exactly reproduced by
the quantum motion in the coherent state. This means that if the quantum harmonic oscillator is in a
coherent state then the expectation values of position and momentum oscillate in such a way that they
exactly reproduce the classical motion. With the same x0 the energy becomes E(t) = 〈Ĥ〉α (t) − 1

2~ω.
Both terms are time independent but they differ by − 1

2~ω, and this is a quantum phenomenon. This
difference is the zero point energy E0 = 1

2~ω, and since |α0| � E0 for a classical harmonic oscillator the
energy can also be seen as equal.

5.9 Displacement Operator

Since one can generate a coherent state using the displacement operator on the ground state of the
quantum harmonic oscillator, it plays a crucial role in the study of coherent states. It also plays an
important role in other areas such as in quantum optics.

The displacement operator is defined as

D̂(α) = eα â
†−α∗ â (5.10)

where α is a complex scalar. Using the special case of the Baker-Campbell-Hausdorff formula with[
Â,
[
Â, B̂

]
=
[
B̂,
[
Â, B̂

]
= 0 ⇒ eÂ+B̂ = eÂ eB̂ e−

1
2 [Â,B̂]

for Â = â, B̂ = â† and [â, â†] = 1 satisfying the preconditions because the commutator is a scalar, the
displacement operator can be written as

D̂(α) = eα â
†
e−α

∗â e−
1
2 [α â

†,−α∗â] = eα â
†
e−α

∗â e−|α|
2/2 = e−|α|

2/2 eα â
†
e−α

∗â

because [α â†,−α∗â] = −α∗α[â†, â] = −|α|2(−1) = |α|2.

The adjoint of the displacement operator is

D̂†(α) = eα
∗ â−α â† = e|α|

2/2 eα
∗â e−α â

†

using (eÂ)† = eÂ
†
. This shows D̂(α) D̂†(α) = D̂†(α) D̂(α) = I because the exponents of the corresponding

exponentials commute. Thus, D̂†(α) = D̂−1(α) and the displacement operator is unitary. Again using
the commutation relations proves D̂(−α) = D̂†(α) such that

D̂†(α) = D̂−1(α) = D̂(−α)

13



follows. The next property is

D̂(α) D̂(β) = e(αβ
∗−α∗β)/2 D̂(α+ β)

and can be proven

D̂(α+ β) = eα â
†−α∗ â+β â†−β∗ â = eα â

†−α∗ â eβ â
†−β∗ â e−

1
2 [α â

†−α∗ â,β â†−β∗ â]

= D̂(α) D̂(β) e−
1
2 [α â

†−α∗ â,β â†−β∗ â] = D̂(α) D̂(β) e−
1
2 (αβ

∗−α∗β)

using the same version of the Baker-Campbell-Hausdorff formula as above and the derivation

[α â† − α∗ â, β â† − β∗ â] = −αβ∗[â†, â]− α∗β[â, â†] = −αβ∗(−1)− α∗β(+1) = αβ∗ − α∗β

for the scalar exponent. This property is the key to understand the name displacement operator.

Two commutation relations are needed, and the first one is[
â, D̂(α)

]
=
[
â, e−|α|

2/2 eα â
†
e−α

∗â
]

= e−|α|
2/2
[
â, eα â

†
e−α

∗â
]

= e−|α|
2/2
(
eα â

†
[
â, e−α

∗â
]

+
[
â, eα â

†
]
e−α

∗â
)

= e−|α|
2/2
[
â, eα â

†
]
e−α

∗â

= e−|α|
2/2[â, â†]α eαâ

†
e−α

∗â = α e−|α|
2/2 eαâ

†
e−α

∗â = α D̂(α)

using [Â, B̂Ĉ] = B̂[Â, Ĉ] + [Â, B̂]Ĉ and [Â, [Â, B̂]] = [B̂, [Â, B̂]] = 0 ⇒ [Â, F (B̂)] = [Â, B̂]F ′(B̂) as well
as [â, e−α

∗â] = 0. A similar calculation gives the second commutation relation and[
â, D̂(α)

]
= α D̂(α)

[
â†, D̂(α)

]
= α∗ D̂(α)

lists both of them.

An important property of unitary operators is that they conserve the norm of quantum states. This
property is important for translation in space and time evolution. The unitary transformation of â and
â† with respect to the displacement operator is

D̂(α)† â D̂(α) = D̂(α)†
(
D̂(α) â+ α D̂(α)

)
= D̂(α)† D̂(α) â+ D̂(α)† D̂(α)α = I â+ Iα = â+ α

D̂(α)† â† D̂(α) = â† + α∗

because of â D̂(α) = D̂(α) â + α D̂(α) following from the first commutator and a similar derivation for
the second one.

The displacement operator can be applied in the context of coherent states â |α〉 = α |α〉 because

|α〉 = D̂(α) |0〉 (5.11)

or, in words, because one can write a coherent state |α〉 as equal to the displacement operator applied to
the ground state of the quantum harmonic oscillator. To prove this one shows

â
(
D̂(α) |0〉

)
= â D̂(α) |0〉 =

(
D̂(α) â+ α D̂(α)

)
|0〉 = D̂(α) â |0〉+ α D̂(α) |0〉 = 0 + α

(
D̂(α) |0〉

)
again using â D̂(α) = D̂(α) â+ α D̂(α). Therefore, D̂(α) |0〉 is an eigenstate of â with eigenvalue α, and
one can generate the coherent state |α〉 by the application of the displacement operator on the ground
state. This is, by the way, an alternative but equivalent definition of a coherent state.

The application of D̂(β) to the state |α〉 = D̂(α) |0〉 gives

D̂(β) |α〉 = D̂(β) D̂(α) |0〉
= e(αβ

∗−α∗β)/2 D̂(α+ β) |0〉 = e(αβ
∗−α∗β)/2 |α+ β〉

and this is an irrelevant factor times another coherent state that is displaced by β compared to the
original one. This is obviously the reason why this operator is called the displacement operator.
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5.10 Coherent State Wave Function

In the position representation with x̂ |x〉 = x |x〉 a state |ψ〉 is defined as

|ψ〉 =

∫
dxψ(x) |x〉 ψ(x) = 〈x|ψ〉

and ψ(x) is called the wave function. The wave functions of coherent states is defined as ψα(x) = 〈x|α〉
where |α〉 is the coherent state. The coherent state wave function is therefore

ψα(x) = 〈x|α〉 = 〈x|D̂(α)|0〉

using (5.11). The exponent in the definition (5.10) can be written as

α â† − α∗ â = α

(√
mω

2~
x̂− i 1√

2m ~ω
p̂

)
− α∗

(√
mω

2~
x̂+ i

1√
2m ~ω

p̂

)
=

√
mω

2~
(
α− α∗

)
x̂− i√

2m ~ω
(
α+ α∗

)
p̂

in terms of the position and momentum operators with (5.1). The displacement operator can therefore
be rewritten as

D̂(α) = exp

(√
mω

2~
(
α− α∗

)
x̂− i√

2m ~ω
(
α+ α∗

)
p̂

)
= exp

(√
mω

2~
(
α− α∗

)
x̂

)
· exp

(
− i√

2m ~ω
(
α+ α∗

)
p̂

)
· exp

(
−1

2

[√
mω

2~
(
α− α∗

)
x̂,− i√

2m ~ω
(
α+ α∗

)
p̂

])
= exp

(√
mω

2~
(
α− α∗

)
x̂

)
· exp

(
− i√

2m ~ω
(
α+ α∗

)
p̂

)
· exp

(
−1

4

(
α2 − (α∗)2

))
using the Baker-Campbell-Hausdorff formula for [x̂, p̂] = i~.

Inserting this result for the displacement operator into ψα(x) = 〈x|D̂(α)|0〉 gives in terms of the ground-
state wave function ψ0(x)

ψα(x) = exp

(
−1

4

(
α2 − (α∗)2

))〈
x

∣∣∣∣ exp

(√
mω

2~
(
α− α∗

)
x̂

)
exp

(
− i√

2m ~ω
(
α+ α∗

)
p̂

) ∣∣∣∣ 0〉
= exp

(
−1

4

(
α2 − (α∗)2

))
exp

(√
mω

2~
(
α− α∗

)
x

)〈
x

∣∣∣∣ exp

(
− i√

2m ~ω
(
α+ α∗

)
p̂

) ∣∣∣∣ 0〉
= exp

(
−1

4

(
α2 − (α∗)2

))
exp

(√
mω

2~
(
α− α∗

)
x

)〈
x

∣∣∣∣∣ T̂
(√

~
2mω

(
α+ α∗

)) ∣∣∣∣∣ 0
〉

= exp

(
−1

4

(
α2 − (α∗)2

))
exp

(√
mω

2~
(
α− α∗

)
x

)〈
x−

√
~

2mω

(
α+ α∗

) ∣∣∣∣∣ 0
〉

= exp

(
−1

4

(
α2 − (α∗)2

))
exp

(√
mω

2~
(
α− α∗

)
x

)
ψ0

(
x−

√
~

2mω

(
α+ α∗

))

by using 〈x| x̂ = 〈x|x and the translation operator (5.6). With

〈x̂〉α =

√
~

2mω
(α+ α∗) 〈p̂〉α = −i

√
m~ω

2
(α− α∗)

the coherent state wave function becomes

ψα(x) = exp

(
−1

4

(
α2 − (α∗)2

))
exp

(
i

~
〈p̂〉α x

)
ψ0

(
x− 〈x̂〉α

)
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showing that this is a simple shift of the ground state. Using further

−1

4

(
α2 − (α∗)2 = −i Re(α) Im(α) = i ϑα ϑα = −Re(α) Im(α) ∈ R

leads to

ψα(x) = eiϑα ei〈p̂〉αx/~ ψ0

(
x− 〈x̂〉α

)
(5.12)

for the wave function of the coherent state |α〉.

5.11 Minimum Uncertainty States

The states that minimize the uncertainty due to Heisenberg’s uncertainty principle are called minimum
uncertainty states. For position and momentum the uncertainty is

∆x̂∆p̂ ≥ ~
2

due to [x̂, p̂] = i~, and the question is what states of the system lead to the condition ∆x̂∆p̂ = ~
2 .

The derivation here is done again but differently than for the proof of the general uncertainty principle.
For a |ψ〉 the state |ϕ〉 = (σ̂x+iλ σ̂p) |ψ〉 is defined where λ ∈ R and where the two mean square deviations
σ̂x and σ̂p are calculated with respect to |ψ〉. Calculating the scalar product gives

〈ϕ|ϕ〉 = 〈ψ|(σ̂x − iλ σ̂p)(σ̂x + iλ σ̂p)|ψ〉 = 〈ψ|σ̂2
x|ψ〉+ iλ 〈ψ|(σ̂xσ̂p − σ̂pσ̂x)|ψ〉+ λ2 〈ψ|σ̂2

p|ψ〉
= 〈ψ|σ̂2

x|ψ〉+ iλ 〈ψ|[σ̂x, σ̂p]|ψ〉+ λ2 〈ψ|σ̂2
p|ψ〉 = 〈ψ|σ̂2

x|ψ〉+ iλ 〈ψ|(i~)|ψ〉+ λ2 〈ψ|σ̂2
p|ψ〉

= 〈σ̂2
x〉ψ − λ~ + λ2 〈σ̂2

p〉ψ ≥ 0

using [σ̂x, σ̂p] = [x̂− 〈x̂〉ψ , p̂− 〈p̂〉ψ] = [x̂, p̂] = i~.

As a reminder on quadratic function f(x) = ax2 + bx+ c this function satisfies f(x) ≥ 0 for all values x
if a > 0 and the function has one or zero roots f(x) = 0 but not two roots. The well-known formula for
the roots is

x =
−b±

√
b2 − 4ac

2a
∆ = b2 − 4ac

where the discriminant ∆ determines the number of real roots. The conditions for f(x) ≥ 0 for all x is
therefore a > 0 and ∆ ≤ 0 or 4ac ≥ b2. This means for the above function

a = 〈σ̂2
p〉ψ b = −~ c = 〈σ̂2

x〉ψ ⇒ 〈σ̂2
x〉ψ 〈σ̂

2
p〉ψ ≥

~2

4

and therefore the Heisenberg uncertainty principle ∆x̂∆p̂ ≥ ~
2 because of ∆Â =

√
〈σ̂2
A〉ψ.

This derivation of the uncertainty principle is useful because

〈ϕ|ϕ〉 ≥ 0 ⇒ 〈σ̂2
x〉ψ − λ~ + λ2 〈σ̂2

p〉ψ ≥ 0 ⇒ ∆x̂∆p̂ ≥ ~
2

〈ϕ|ϕ〉 = 0 ⇒ 〈σ̂2
x〉ψ − λ~ + λ2 〈σ̂2

p〉ψ = 0 ⇒ ∆x̂∆p̂ =
~
2

〈ϕ|ϕ〉 = 0 ⇒ |ϕ〉 = 0 ⇒ (σ̂x + iλ σ̂p) |ψ〉 = 0

shows the condition for minimal uncertainty states. This gives ((x̂−〈x̂〉ψ)+ iλ(p̂−〈p̂〉ψ)) |ψ〉 = 0 because

of σ̂A = Â − 〈Â〉ψ. The remaining task is to determine |ψ〉 satisfying this equation in the position
representation in terms of wave functions.

The determined condition is (
x− 〈x̂〉ψ + iλ

(
−i~ d

dx

)
− 〈p̂〉ψ

)
ψ(x) = 0
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in position representation, and this is a differential equation. With the not so intuitive change of variable

ψ(x) = ei 〈p̂〉ψ x/~ u(x− 〈x̂〉ψ)

the derivative with respect to x becomes

d

dx
ψ(x) =

i 〈p̂〉ψ
~

ei 〈p̂〉ψ x/~ u(x− 〈x̂〉ψ) + ei 〈p̂〉ψ x/~
d

dx
u(x− 〈x̂〉ψ)

= ei 〈p̂〉ψ x/~
(
i 〈p̂〉ψ

~
+

d

dx

)
u(x− 〈x̂〉ψ)

giving the differential equations

ei 〈p̂〉ψ x/~
(
x− 〈x̂〉ψ + λ~

(
i 〈p̂〉ψ

~
+

d

dx

)
− iλ 〈p̂〉ψ

)
u(x− 〈x̂〉ψ) = 0((

x− 〈x̂〉ψ
)

+ λ~
d

d(x− 〈x̂〉ψ)

)
u(x− 〈x̂〉ψ) = 0

and (
q + λ~

d

dq

)
u(q) = 0

after substituting q = x− 〈x̂〉ψ and using the fact that 〈x̂〉ψ is a scalar. This differential equation is easy
to solve ∫

1

u(q)

du(q)

dq
dq = − 1

λ~

∫
q dq

ln
(
u(q)

)
= − 1

2λ~
q2 + c ⇒ u(q) = Ae−q

2/2λ~

by using separation of variables and integration. The result is

ψ(x) = Aei 〈p̂〉ψ x/~ e−(x−〈x̂〉ψ)
2/2λ~

for the original wave function ψ(x). To determine ψ(x), this wave function is assumed to be normalized
such that

1 =

∫ +∞

−∞
|ψ(x)|2 dx = |A|2

∫ +∞

−∞
e−(x−〈x̂〉ψ)

2/λ~ dx = |A|2
√
πλ~

∫ +∞

−∞
e−a(x+b)

2

dx =

√
π

a

using the Gaussian integral on the right side and the fact that the other exponential is just a phase.

The minimum uncertainty wave function is therefore

ψ(x) =

(
1

πλ~

)1/4

ei 〈p̂〉ψ x/~ e−(x−〈x̂〉ψ)
2/2λ~

selecting A real and positive with a phase choice. Therefore,

|ψ(x)|2 =
1√
πλ~

e−(x−〈x̂〉ψ)
2/λ~

is a Gaussian. Thus, minimum uncertainty states have Gaussian wave functions and they have already
come up in various place such as the ground state of the quantum harmonic oscillator and the coherent
states.

Going back to the discriminant b2 − 4ac where f(x) = 0 for a > 0 and b2 = 4ac shows that this is the
case for x0 = − b

2a . The corresponding λ0 is

λ0 =
~

2 〈σ̂2
p〉ψ

=
~

2(∆p̂)2
=

2(∆x̂)2

~

using 〈σ̂2
p〉ψ = (∆p̂)2 and ∆x̂∆p̂ = ~

2 . The final expression is therefore

ψ(x) =

(
1

2π(∆x̂)2

)1/4

ei 〈p̂〉ψ x/~ e
−
(
x−〈x̂〉ψ

2∆x̂

)2

|ψ(x)|2 =
1√

2π∆x̂
e
− 1

2

(
x−〈x̂〉ψ

∆x̂

)2

(5.13)

for the minimum uncertainty wave function.
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5.12 Minimum Uncertainty State and Coherent State Wave Function

The coherent state wave function in (5.12) has certain properties. One of them is

|ψα(x)|2 =
∣∣ψ0

(
x− 〈x̂〉α

)∣∣2 =

√
mω

π~
exp

(
−mω

~
(
x− 〈x̂〉α

)2)
=

1√
2π∆x̂α

exp

(
−1

2

(
x− 〈x̂〉α

∆x̂α

)2
)

because the two exponentials are just phases. This is a Gaussian centered at the expectation value of the
position operator 〈x̂〉α. Using

〈x̂〉α =

√
~

2mω
〈p̂〉α =

√
m~ω

2
⇒ 〈x̂〉α 〈p̂〉α =

~
2

for a coherent state shows that coherent states are minimum uncertainty states.

A coherent state |α〉 can be written as D̂(α) |0〉. The Gaussian |ψ0(x)|2 at x = 0 becomes the Gaussian

|ψα(x)|2 at x = 〈x̂〉α. Thus, a coherent state is simply a displacement of a Gaussian ground state wave
function from the origin to the new position, and this displacement is provided by the action of the
displacement operator acting on the ground state.

If |ψ(0)〉 = |α0〉 is a coherent state then |ψ(t)〉 = e−iωt/2 |α〉 at a later time t. A coherent state stays

coherent at all times. The time dependence of |ψα(x, t)|2 is

|ψα(x, t)|2 = |ψ0(x− 〈x̂〉α (t))|2 =
1√

2π∆x̂α
exp

(
−1

2

(
x− 〈x̂〉α (t)

∆x̂α

)2
)

with

〈x̂〉α (t) =

√
2~
mω
|α0| cos(ωt− ϕ) ∆x̂α =

√
~

2mω

where 〈x̂〉α (t) depends on time but ∆x̂α is constant.

Figure 4: Time evolution of a coherent state

The evolution in time of a coherent state is visualized in figure 4 where the situation at three different
times t is shown. The wave packet is a coherent state with the initial position on one extreme of the
motion as in this figure on the left side. Time evolution starts, and the packet moves to the left as in the
figure in the middle until it reaches the other extreme as in the figure on the right side. Because ∆x̂α
is independent of time the Gaussian representing the wave packet does not change its width and just
moves back and forth where the center moves according to the formula for 〈x̂〉α (t) with cos(ωt− ϕ). In
other words, the wave package does not spread in time and moves according to a cosine function as the
classical harmonic oscillator does.
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