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Abstract

The video channel with the title “Professor M does Science” in YouTube offers a simple step-
by-step but all the same very valuable and rigorous introduction into the world of quantum physics.
This script covers the hydrogen atom and helps to digest the topic covered by a group of those videos
but is not meant as a replacement for them.

6 Interacting Particles and the Hydrogen Atom

6.1 Relative Motion of Two Interacting Quantum Particles

A particle at position r1 with mass m1 and a particle at position r2 with mass m2 interact via a potential
V = V (r1 − r2) that only depends on the relative position of the two particles. In quantum mechanics,
the first particle has position r̂1 = (x̂1, ŷ1, ẑ1) and momentum p̂

1
= (p̂x1, p̂y1, p̂z1) with the commutation

relations [x̂1, p̂x1] = i~, [ŷ1, p̂y1] = i~, [ẑ1, p̂z1] = i~, and similarly for the second particle.

The center of mass coordinates R̂ and the relative coordinates r̂ are defined as

R̂ =
m1r̂1 +m2r̂2

m1 +m2
= (X̂, Ŷ , Ẑ) r̂ = r̂1 − r̂2 = (x̂, ŷ, ẑ) (6.1)

and the original coordinates r̂1 and r̂2 can be written as

r̂1 = R̂+
m2

m1 +m2
r̂ r̂2 = R̂− m1

m1 +m2
r̂

in terms of R̂ and r̂.

Classically, the total momentum is

P = M Ṙ = (m1 +m2)
m1ṙ1 +m2ṙ2

m1 +m2
= m1ṙ1 +m2ṙ2 = p

1
+ p

2

in the center of mass coordinates where M is the total mass. It is just the sum of the momenta of the
individual particles. The relative momentum is defined as

p = µ ṙ =
m1m2

m1 +m2
(ṙ1 − ṙ2) =

m2(m1ṙ1)−m1(m2ṙ2)

m1 +m2
=
m2p1

−m1p2

m1 +m2

where µ is called the reduced mass.

In quantum mechanics, the total momentum operator P̂ and the relative momentum operator p̂ are
defined as

P̂ = p̂
1

+ p̂
2

= (P̂x, P̂y, P̂z) p̂ =
m2p̂1

−m1p̂2

m1 +m2
= (p̂x, p̂y, p̂z) (6.2)
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as in the classical case. The individual p̂
1

and p̂
2

momenta can be written as

p̂
1

=
m1

m1 +m2
P̂ + p̂ p̂

2
=

m2

m1 +m2
P̂ − p̂

in terms of P̂ and p̂. The commutation relations are

[X̂, P̂x] = i~ [Ŷ , P̂y] = i~ [Ẑ, P̂z] = i~
[x̂, p̂x] = i~ [ŷ, p̂y] = i~ [ẑ, p̂z] = i~

(6.3)

as [X̂, P̂x] = 1
m1+m2

(m1([x̂1, p̂x1] + [x̂1, p̂x2]) + m2([x̂2, p̂x1] + [x̂2, p̂x2])) = 1
m1+m2

(m1 i~ + m2 i~), for
example, shows.

The Hamiltonian of the system with the two particles is

Ĥ =
p̂2

1

2m1
+

p̂2

2

2m2
+ V (r̂1 − r̂2)

where p̂2

1
and p̂2

2
can be written as

p̂2

1
=

m2
1

(m1 +m2)2
P̂

2
+ p̂2 +

2m1

m1 +m2
P̂ · p̂ p̂2

2
=

m2
2

(m1 +m2)2
P̂

2
+ p̂2 − 2m2

m1 +m2
P̂ · p̂

in terms of the new coordinates. The Hamiltonian becomes

Ĥ =
P̂

2

2M
+
p̂2

2µ
+ V (r̂) (6.4)

using M = m1 + m2 and 1
m1

+ 1
m2

= 1
µ . Thus, the system can either be seen as a system of two real

particles with mass m1 and m2 or as a system of two fictitious particles with mass M and µ. Because
the potential only depends on r̂ the two fictitious particles do not interact, and this makes the problem
much simpler. Thus, the Hamiltonian can be separated into two non-interacting terms

Ĥ = ĤCoM + Ĥrel ĤCoM =
P̂

2

2M
Ĥrel =

p̂2

2µ
+ V (r̂)

where ĤCoM is the center of mass Hamiltonian describing the behavior of the center of mass, and Ĥrel

is the relative Hamiltonian describing the behavior of a particle that is subject to the potential energy
V (r̂).

The state space WCoM for the Hamiltonian ĤCoM with the eigenvalues ECoM and the eigenstates |ϕ〉CoM

as well as the state spaceWrel for the Hamiltonian Ĥrel with the eigenvalues Erel and the eigenstates |χ〉rel

allow to build the state space W = WCoM ⊗Wrel for the Hamiltonian Ĥ with the eigenvalue equation
Ĥ |ψ〉 = E |ψ〉. The eigenvalues of Ĥ are E = ECoM +Erel and the eigenstates are |ψ〉 = |ϕ〉CoM ⊗ |χ〉rel.

In other words, the two particle system with the Hamiltonian Ĥ can be solved by finding the solutions
for the two one particle systems with the Hamiltonians ĤCoM and Ĥrel, respectively. The eigenvalue
equation for Ĥ is

Ĥ |ψ〉 = Ĥ(|ϕ〉CoM ⊗ |χ〉rel) = (ĤCoM ⊗ Ĥrel)(|ϕ〉CoM ⊗ |χ〉rel)

= ECoM(|ϕ〉CoM ⊗ |χ〉rel) + Erel(|ϕ〉CoM ⊗ |χ〉rel) = (ECoM + Erel)(|ϕ〉CoM ⊗ |χ〉rel)

and it follows E = ECoM +Erel and |ψ〉 = |ϕ〉CoM ⊗ |χ〉rel such that the two Hamiltonians can be solved
independently.

The Hamiltonian ĤCoM becomes

ĤCoM =
P̂

2

2M
→ − ~2

2M
∇2

CoM ∇CoM =

(
∂

∂X
,
∂

∂Y
,
∂

∂Z

)
(6.5)
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in position representation and has

− ~2

2M
∇2

CoM ϕCoM(R) = ECoM ϕCoM(R) ϕCoM(R) =
1

(2π~)3/2
ei P ·R/~ ECoM =

P 2

2M

as the eigenvalue equation and its solution because the fictitious particle of the center of mass is a free
particle whose solutions are plane waves with a continuous spectrum of energy eigenvalues.

The Hamiltonian Ĥrel becomes

Ĥrel =
p̂2

2µ
+ V (r̂)→ − ~2

2µ
∇2

rel + V (r̂) ∇rel =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
(6.6)

in position representation and has[
− ~2

2µ
∇2

rel + V (r̂)

]
χrel(r) = Erel χrel(r)

as the eigenvalue equation. There is no general solution because it depends on the form of the potential
V (r̂). However, there is a general solution in the special case where the potential only depends on their
relative distance such that V (r) = V (r) where r = |r|. This is the central potential, and the Coulomb
potential is an example.

6.2 Properties of the Hydrogen Atom

Hydrogen is the simplest of all elements as it consists of a single proton and a single electron. It makes
up in the order of 74% of all baryonic matter in the universe. It is also important because it is one of
the few quantum systems one can solve analytically. The proton has a mass mp = 1.67 · 10−27 kg and
an electric charge e = qp = 1.60 · 10−19 C. The electron has a mass me = 9.11 · 10−31 kg and an electric
charge −e = qe = −1.60 · 10−19 C. Thus, the mass ratio is mp/me = 1 833, and the situation can be
seen conceptually as an electron in the field of a proton. For other elements like He, Li, and so on the
mass ratio between nucleus and electrons is even larger, and there exist only approximate solutions (the
Born-Oppenheimer approximations) for them.

As classical particles, the position of the proton is rp and the position of the electron is re. The Coulomb
potential is

V (rp, re) =
1

4πε0

qp qe∣∣rp − re∣∣ = − 1

4πε0

e2∣∣rp − re∣∣
where ε0 is the vacuum permittivity. As quantum particles, the potential becomes an operator

V (r̂p, r̂e) = − 1

4πε0

e2∣∣r̂p − r̂e∣∣
such that

Ĥ =
p̂2

p

2mp
+

p̂2

e

2me
− 1

4πε0

e2∣∣r̂p − r̂e∣∣ (6.7)

is the non-relativistic Hamiltonian of the hydrogen atom. The hydrogen atom is a weakly relativistic
system, and there are measurable relativistic terms called fine structure and hyperfine structure but they
are ignored here.

The coordinates are replaced

(r̂p, p̂p), (r̂e, p̂e)→ (R̂, P̂ )(r̂, p̂)

following the approach shown for the relative motion of two interacting particles with (6.1) and (6.2)
where the first particle is the proton and the second particle is the electron.
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The Hamiltonian (6.7) can be written as

Ĥ =
P̂

2

2M
+
p̂2

2µ
− 1

4πε0

e2

|r̂|
= ĤCoM + Ĥrel ĤCoM =

P̂
2

2M
Ĥrel =

p̂2

2µ
− 1

4πε0

e2

|r̂|

according to (6.4) separated into a center of mass Hamiltonian and a relative Hamiltonian. The center
of mass Hamiltonian represents a free particle, and the center of mass can therefore be assumed to be
stationary without loss of generality. The interesting physics of the hydrogen atom are captured by the
relative Hamiltonian Ĥrel.

The position of the center of mass in (6.1) can be approximated as

R̂ =
mpr̂p +mer̂e
mp +me

≈
mpr̂p +mer̂e

mp
= r̂p +

me

mp
r̂e ≈ r̂p + 10−3r̂e ≈ r̂p

because of the large mass difference between the proton and the electron. The reduced mass µ can be
approximated similarly as

1

µ
=

1

mp
+

1

me
≈ 1

me
µ ≈ me

because mp � me. Thus, the hydrogen atom is almost equal to an electron moving about a stationary
proton.

6.3 Power Series Solution of the Hydrogen Atom

In order to solve the Hamiltonian of the hydrogen atom (6.7) it is sufficient to solve the relative Hamil-
tonian

Ĥrel =
p̂2

2µ
− 1

4πε0

e2

|r̂|
1

µ
=

1

mp
+

1

me
p̂ =

mep̂p −mpp̂e
mp +me

r̂ = r̂p − r̂e (6.8)

with the corresponding eigenvalue equation for the Hamiltonian (6.6) from now on just called Ĥ

Ĥ = − ~2

2µ
∇2

rel −
1

4πε0

e2

r
= − ~2

2µ

[
1

r

∂2

∂r2
r +

1

r2

(
∂2

∂θ2
+

1

tan θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)]
− 1

4πε0

e2

r

in the position representation with spherical coordinates. The potential is a central potential, and there-
fore results from above can be used. Because of the mass difference between a proton and an electron
this relative Hamiltonian can be interpreted approximately as describing the motion of an electron in an
electrostatic potential generated by a stationary proton.

Thus, the task is to solve the eigenvalue equation Ĥ ψ(r) = E ψ(r). The eigenfunctions of the Hamiltonian

can be chosen to also be eigenfunctions of L̂
2

and L̂z

Ĥ ψ(r) = E ψ(r) L̂
2
ψ(r) = `(`+ 1)~2 ψ(r) L̂z ψ(r) = m`~ψ(r)

because the Hamiltonian commutes with the angular momentum operators. The eigenvalue ` can only
take integer values ` = 0, 1, 2, 3, ..., and the eigenvalue m` can only take values m` = −`,−` + 1, ..., ` in
integer steps. The common eigenfunctions ψ(r) can be labeled by three quantum numbers k, `, m` as
ψk`m`

(r) where k describes the energy spectrum for a given ` and m`. The energy eigenvalues can be
labeled as Ek`.

The solutions of the eigenvalue equations are ψk`m`
(r) = Rk`(r)Y

m`

` (θ, ϕ) where the angular part
Y m`

` (θ, ϕ) of the eigenfunctions has the spherical harmonics as its solution, and the spherical harmonics
are the same for any central potential. Thus, one part of the problem has been solved.

The other part Rk`(r) of the eigenfunctions is called the radial part. This is the most interesting part
because it depends on the central potential. The eigenvalue equation is[

− ~2

2µ

1

r

d2

dr2
r +

`(`+ 1)~2

2µ r2
− 1

4πε0

e2

r

]
Rk`(r) = Ek`Rk`(r)
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and becomes with the substitution Rk`(r) = 1
ruk`(r)[

− ~2

2µ

d2

dr2
+
`(`+ 1)~2

2µ r2
− 1

4πε0

e2

r

]
uk`(r) = Ek` uk`(r)

where the boundary condition is uk`(0) = 0. This equation can be interpreted as a particle in one
dimension with an energy consisting of a kinetic energy and an effective potential Veff(r). It has different
forms depending on ` but all of them approach zero asymptotically from below as r →∞.

For positive energies E > 0 the quantum states are unbound, the energy spectrum is continuous, and
the eigenfunctions are not square integrable. For negative energies E < 0 the quantum states are bound,
the energy spectrum is discrete, and the eigenfunctions are square integrable functions that vanish as r
becomes large. The focus here is on the negative energy eigenvalues.

Two values

a0 =
4πε0~2

µ e2
EI =

µ

2~2

(
e2

4πε0

)2

(6.9)

where a0 is called the reduced Bohr radius with units of length and EI is called ionization energy with
units of energy are introduced to simplify notation but both values have also a physical meaning. The
differential equation becomes[

a2
0

d2

dr2
− a2

0

`(`+ 1)

r2
+ 2a0

1

r
+
Ek`
EI

]
uk`(r) = 0

with the eigenvalue Ek` moved to the left side. Two further simplifications lead to the differential equation[
d2

dρ2
− `(`+ 1)

ρ2
+

2

ρ
− λ2

k`

]
uk`(ρ) = 0 ρ =

r

a0
λk` =

√
−Ek`
EI

where the minus sign in λk` ensures that this value is real for Ek` < 0. This simplifications use the
reduced Bohr radius as the unit of length and the ionization energy as the unit of energy.

To solve this equation the limit ρ→∞ with the differential equation[
d2

dρ2
− λ2

k`

]
uk`(ρ) = 0

is examined first. This is a standard second order linear homogeneous differential equation with the two
solutions uk`(ρ) = e±λk`ρ. Thus, the solutions in the limit of large values of ρ behave like exponentials.
For the full range ρ ∈ [0,∞) the solution can be written as

uk`(ρ) = e−λk`ρ vk`(ρ)

for some functions vk`(ρ). The solution must behave like a decaying exponential in the limit of large
values of ρ, and the hope is that the mathematical side simplifies by singling the exponential out. Note
that this does not get rid of the unbound solutions despite the negative sign in the exponent.

By using the chain rule and by eliminating the common factor e−λk`ρ the differential equation becomes[
λ2
k` − 2λk`

d

dρ
+

d2

dρ2
− `(`+ 1)

ρ2
+

2

ρ
− λ2

k`

]
vk`(ρ) = 0[

d2

dρ2
− 2λk`

d

dρ
+

2

ρ
− `(`+ 1)

ρ2

]
vk`(ρ) = 0

with the boundary condition vk`(0) = 0 where only the last two steps are shown. The power series with
c0 6= 0

vk`(ρ) = ρs
∞∑
q=0

cq ρ
q =

∞∑
q=0

cq ρ
q+s
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leads to the two derivatives

d

dρ
vk`(ρ) =

d

dρ

∞∑
q=0

cq ρ
q+s =

∞∑
q=0

(q + s)cq ρ
q+s−1

d2

dρ2
vk`(ρ) =

d

dρ

∞∑
q=0

(q + s)cq ρ
q+s−1 =

∞∑
q=0

(q + s)(q + s− 1)cq ρ
q+s−2

and the differential equation can be rewritten as

∞∑
q=0

cq

[
(q + s)(q + s− 1)ρq+s−2 − 2λk`(q + s)ρq+s−1 +

(
2

ρ
− `(`+ 1)

ρ2

)
ρq+s

]
= 0

∞∑
q=0

cq
[
{(q + s)(q + s− 1)− `(`+ 1)} ρq+s−2 + 2 {1− λk`(q + s)} ρq+s−1

]
= 0

in terms of this power series where

∞∑
q=0

cq ρ
q+s
∣∣∣
ρ=0
⇒ s > 0

is required by the boundary condition. This result so far can be summarized as

∞∑
q=0

cq
[
Aq ρ

q+s−2 +Bq ρ
q+s−1

]
= 0 s > 0 c0 6= 0

with Aq = {(q + s)(q + s− 1)− `(`+ 1)} and Bq = 2 {1− λk`(q + s)}. This leads to the set of equations

ρs−2 : c0A0 = 0 ⇒ A0 = s(s− 1)− `(`+ 1) = 0 ⇒ s = `+ 1

ρs−1 : c1A1 + c0B0 = 0

...

ρq+s−2 : cq Aq + cq−1Bq−1 = 0

and to s = ` + 1 because A0 = 0 has the two solutions s = −` and s = ` + 1 but only one is consistent
with s > 0 and ` ≥ 0. The general term with cq Aq + cq−1Bq−1 = 0 gives

cq [(q + s)(q + s− 1)− `(`+ 1)] + cq−1 · 2 [1− λk`(q + s− 1)] = 0

cq [(q + `+ 1)(q + `)− `(`+ 1)] + 2 cq−1 [1− λk`(q + `)] = 0

cq q
(
q + 2`+ 1

)
+ 2cq−1

(
1− λk`(q + `)

)
= 0

and the ratio

cq
cq−1

=
2(λk`(q + `)− 1)

q(q + 2`+ 1)
c0 6= 0 (6.10)

using s = `+ 1.

The function vk`(ρ) with the limit

vk`(ρ) =

∞∑
q=0

cq ρ
q+s : lim

q→∞

{
cq
cq−1

}
=

2λk` q

q2
=

2λk`
q

must be normalizable as an infinite series. The function

e2λk`q =

∞∑
q=0

(2λk`)
q

q!
ρq =

∞∑
q=0

aqρ
q aq =

(2λk`)
q

q!

aq
aq−1

=
2λk`
q
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has the same limit for q →∞, and comparing

vk`(ρ) =

∞∑
q=0

cq ρ
q+s : lim

q→∞

{
cq
cq−1

}
=

2λk`
q

e2λk`q =

∞∑
q=0

aqρ
q : lim

q→∞

{
aq
aq−1

}
=

2λk`
q

shows that the difference is just the exponents q + s versus q, and this becomes irrelevant when taking
the limit q → ∞. This means that vk`(ρ) ∼ e2λk`q for high-order terms in the expansion if the series is
infinite. However, this is a problem because the exponent 2λk` q is positive and the exponential function
becomes increasingly large for large values ρ. Thus, the physically relevant solutions for vk`(ρ) must
correspond to power series with a finite number of terms.

Therefore, there must be a q = k such that ck = 0 and it follows from (6.10) that cq = 0 for all q ≥ k. It
follows further

λk`(k + `)− 1 = 0 λk` =

√
−Ek`
EI

=
1

k + `
Ek` = −EI λ

2
k` = − EI

(k + `)2

and thus also k = 1, 2, 3, 4, ... because of ` = 0, 1, 2, 3, ... and c0 6= 0. This also means that the energy
eigenvalues of the bound states of the hydrogen atom

Ek` = − EI

(k + `)2
` = 0, 1, 2, 3, ... k = 1, 2, 3, 4, ... (6.11)

are quantized.

Inserting this result into the ratio (6.10) gives iteratively

cq =
2(k − q)

q(q + 2`+ 1)(k + `)
cq−1 from

cq
cq−1

=
2
(
q+`
k+` − 1

)
q(q + 2`+ 1)

=
2(k − q)

q(q + 2`+ 1)(k + `)

= (−1)2

(
2

k + `

)2
(k − q)(k − q + 1)

q(q − 1)(q + 2`+ 1)(q + 2`)
cq−2

= (−1)q
(

2

k + `

)q
(k − q)(k − q + 1) . . . (k − 1)

q(q − 1) . . . 1(q + 2`+ 1)(q + 2`) . . . (2`+ 2)
c0

= (−1)q
(

2

k + `

)q
(k − 1)!/(k − q − 1)!

q! (q + 2`+ 1)!/(2`+ 1)!
c0 = (−1)q

(
2

k + `

)q
(k − 1)!

(k − q − 1)!

(2`+ 1)!

q! (q + 2`+ 1)!
c0

for the coefficient cq expressed in terms of c0. Finally, c0 has to be determined through normalization,
and the radial eigenfunctions Rk` can be determined from uk` and vk`.

6.4 The Quantum Virial Theorem

The virial theorem encodes a simple relation between kinetic and potential energy of any quantum system.
It holds even for quantum systems where no exact solution is available

A time independent Hamiltonian with the eigenvalue equation Ĥ |ψn〉 = En |ψn〉 has the dual eigenvalue
equation 〈ψn| Ĥ = En 〈ψn| because the Hamiltonian is a Hermitian operator and the eigenvalue is real
such that no adjoint and complex conjugate is needed. For a time independent operator Â the expectation
value of the commutator of the Hamitonian and Â is therefore

〈ψn| [Ĥ, Â] |ψn〉 = 〈ψn|ĤÂ− ÂĤ|ψn〉 = 〈ψn|ĤÂ|ψn〉 − 〈ψn|ÂĤ|ψn〉
En 〈ψn| En |ψn〉

= En 〈ψn|Â|ψn〉 − En 〈ψn|Â|ψn〉 = 0

with respect to an eigenstate of the system. This result is called the hypervirial theorem.
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The Hamiltonian of a single particle moving in one direction is

Ĥ =
p̂2

2m
+ V (x̂) = T̂ + V̂

where the kinetic energy operator is called T̂ and the potential energy operator is called V̂ without
specifying the dependence on the position operator x̂. Selecting Â = x̂p̂ the commutator in the hypervirial
theorem becomes [Ĥ, x̂p̂] = x̂[Ĥ, p̂] + [Ĥ, x̂]p̂ using [Â, B̂Ĉ] = [Â, B̂]Ĉ + B̂[Â, Ĉ]. With

[Ĥ, p̂] =

[
p̂2

2m
, p̂

]
+ [V (x̂, p̂] = 0 + i~V ′(x̂) = i~V ′(x̂)

[Ĥ, x̂] =

[
p̂2

2m
, x̂

]
+ [V (x̂, x̂] =

1

2m

(
p̂[p̂, x̂] + [p̂, x̂]p̂

)
+ 0 = − i~

m
p̂

the commutator [Ĥ, x̂p̂] becomes

[Ĥ, x̂p̂] = x̂[Ĥ, p̂] + [Ĥ, x̂]p̂ = i~x̂V ′(x̂)− i~
m
p̂2 = i~

(
x̂V ′(x̂)− 2

(
p̂2

2m

))
= i~

(
x̂V ′(x̂)− 2T̂

)
in compact form. This gives

i~ 〈ψn|x̂V ′(x̂)|ψn〉 − 2i~ 〈ψn|T̂ |ψn〉 = 0

using the hypervirial theorem and leads to the virial theorem

〈ψn|x̂V ′(x̂)|ψn〉 = 2 〈ψn|T̂ |ψn〉 (6.12)

where |ψn〉 is an energy eigenstate. This is usually written as 〈x̂V ′(x̂)〉 = 2 〈T̂ 〉 where one has to remember
that these expectation values are calculated with respect to the energy eigenstates of the system.

The virial theorem provides a very general relationship between the expectation values of potential and
kinetic energies without the need to explicitly evaluate them. Calculations of expectation values can be
tedious because they may require the evaluation of long integrals. Most quantum systems cannot be
solved analytically such that one has to work with approximate solutions.

There is also a virial theorem in the form 2 〈T 〉 = 〈xdVdx 〉 = −〈xF 〉 in classical mechanics using the fact
that the derivative of the potential energy is the negative force. (This is the reason for the name of the
virial theorem because the Latin word for force is vis.) Here the expectation value in quantum mechanics
corresponds to the time average.

The virial theorem takes a rather simple form for the special class of potentials described by homogeneous
functions of degree k. These functions have the property f(s x) = sk f(x) where s 6= 0 is a scalar. An
example is f(x) = λx2 because f(s x) = λ(s x)2 = s2(λx2) = s2f(x). Due to Euler’s theorem

f(s x) = sk f(x) ⇒ k f(x) = x
df

dx

following from

df

ds
f(s x) =

df

d(sx)

d(sx)

ds
= x

df

d(sx)

d

ds

(
sk f(x)

)
= k sk−1f(x)

 x
df

d(sx)
= k sk−1f(x)

for the case s = 1. If the potential energy is described by a homogeneous function obeying therefore
V (s x̂) = sk V (x̂) then k V (x̂) = x̂ V ′(x̂) according to Euler’s theorem. Inserting this into the virial
theorem gives

k 〈V̂ 〉 = 2 〈T̂ 〉 (6.13)

for homogeneous potentials. Because of 〈Ĥ〉 = 〈ψn|Ĥ|ψn〉 = En = 〈T̂ 〉+ 〈V̂ 〉 either 〈T̂ 〉 can be expressed
in terms of 〈V̂ 〉 or vice versa using (6.13). The result is

〈T̂ 〉 =
k En
k + 2

〈V̂ 〉 =
2En
k + 2

8



and there are many potential that are described by homogeneous functions. Two important examples
are the quantum harmonic oscillator and the hydrogen atom.

The quantum harmonic oscillator has the Hamiltonian

Ĥ =
p̂2

2m
+

1

2
mω2x̂2

where the potential is a homogeneous function with k = 2. Therefore, the relation

〈V̂ 〉 = 〈T̂ 〉

follows from the virial theorem (6.13) without the need for an analytical solution of the harmonic oscillator.
There is an analytical solution for the harmonic oscillator such that this equality can be checked but there
are many quantum problems where there is none and where the virial theorem is extremely useful.

Although the discussion so far has been limited to a single particle moving in one dimension, the virial
theorem can be generalized to systems with multiple particles in three dimensions. Given a system of N
particles with position r̂i = (x̂i, ŷi, ẑi), momenta p̂

i
= (p̂xi, p̂yi, p̂zi) and masses mi for i = 1, 2, ..., N the

Hamiltonian

Ĥ =

N∑
i=1

p̂2

i

2mi
+ V (r̂1, r̂2, ..., r̂N ) = T̂ + V̂

can be split similarly to the case in one dimension into T̂ and V̂ where T̂ is the sum of all kinetic terms
and V̂ is the potential V (r̂1, r̂2, ..., r̂N ). The virial theorem becomes〈

N∑
i=1

r̂i · ∇iV (r̂1, r̂2, ..., r̂N )

〉
= 2 〈T̂ 〉 (6.14)

in this generalized case.

Also here play homogeneous functions an important role. Homogeneous functions of degree k with n
variables have the property f(s x1, s x2, ..., s xn) = sk f(x1, x2, ..., xn) where s 6= 0 is a scalar. Euler’s
theorem becomes

k f(x1, x2, ..., xn) =

n∑
i=1

xi
∂f

∂xi

and

k 〈V̂ 〉 = 2 〈T̂ 〉 (6.15)

is the virial theorem for a system with multiple particles in three dimensions with a homogeneous function
as the potential.

The potential energy of the hydrogen atom is given by the electrostatic interaction V (r̂p, r̂e) between a
proton and an electron and can be written in the form

V (x̂p, ŷp, ẑp, x̂e, ŷe, ẑe) =
1

4πε0

e2[
(x̂p − x̂e)2 + (ŷp − ŷe)2 + (ẑp − ẑe)2

]1/2
in terms of six variables. This is a homogeneous function V (s r̂p, s r̂e) = s−1 V (r̂p, r̂e) with k = −1 such

that 〈V̂ 〉 = −2 〈T̂ 〉 according to (6.15). For any atom, molecule, or other material the potential energy
of a two-body system always has the form of the electrostatic interaction

V (r̂1, r̂2) =
1

4πε0

q1 q2

|r̂1 − r̂2|

between any two particles irrespective of how complex the system is. (The quantity q1 q2 is the product
of the two charges.) The two-body interaction obeys the relation V (s r̂1, s r̂2) = s−1V (r̂1, r̂2) such that
the virial theorem (6.15) leads to 〈V̂ 〉 = −2 〈T̂ 〉 as for the hydrogen atom. This is a very general result
because most quantum systems with multiple particles other than the hydrogen atom does not have an
analytical solution.
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6.5 Eigenvalues and Eigenfunctions of the Hydrogen Atom

The relative motion of the hydrogen atom consisting of a proton and an electron is

Ĥrel =
p̂2

2µ
− 1

4πε0

e2

|r̂|
1

µ
=

1

mp
+

1

me
p̂ =

mep̂p −mpp̂e
mp +me

r̂ = r̂p − r̂e

according to (6.8). The relative Hamiltonian is

Ĥrel = − ~2

2µ
∇2 − 1

4πε0

e2

r

in position representation where the potential is a central potential. (In the following Ĥ is used instead
of Ĥrel to simplify notation.) The eigenvalue equation for the Hamiltonian is

Ĥψ(r) = Eψ(r) L̂
2
ψ(r) = `(`+ 1)~2 ψ(r) L̂z ψ(r) = m`~ψ(r)

together with the eigenvalue equations for L̂
2

and L̂z where the possible values for ` and m` are ` =
0, 1, 2, ... and m` = −`,−`+ 1, ..., `− 1, `. The eigenvalue equation for the Hamiltonian becomes

Ĥ ψk`m`
(r) = Ek` ψk`m`

(r) (6.16)

where the eigenfunctions and eigenvalues are labeled with the appropriate quantum numbers. For every
combination of the orbital quantum numbers ` and m` there is a spectrum of energy eigenfunctions
labeled by the additional quantum number k. The energy eigenvalues Ek` do not depend on m` as can
be shown for any central potential. The eigenfunction ψk`m`

(r) is given as a product of a radial part and
an angular part

ψk`m`
(r) = Rk`(r)Y

m`

` (ϑ, ϕ) (6.17)

where the angular functions are the spherical harmonics applicable to any central potential and the radial
functions depend on the form of the radial potential.

The development of the radial functions follows the path

Rk`(r) =
1

r
uk`(r)

uk`(r)→ uk`(ρ) ρ =
r

a0
a0 =

4πε0~2

µe2

uk`(ρ) = e−λk`ρvk`(ρ) λk` =

√
−Ek`
EI

EI =
µ

2~2

(
e2

4πε0

)2

vk`(ρ) =

∞∑
q=0

cqρ
q+s s = `+ 1

with

cq =

(−1)q
(

2

k + `

)q
(k − 1)!

(k − q − 1)!

(2`+ 1)!

q! (q + 2`+ 1)!
c0 if q < k

0 if q ≥ k
(6.18)

started in the discussion of the power series solution for the hydrogen atom. Here the functions Rk`(r)
are determined completely. The topic is the non-relativistic hydrogen atom leaving things such as spin,
fine structure or hyperfine structure aside.

In a first step c0 has to be determined by normalization∫
dr |ψk`m`

(r)|2 = 1

10



but the radial and the angular part can be normalized separately∫ ∞
0

r2dr |Rk`(r)|2 = 1

∫ π

0

sinϑ dϑ

∫ 2π

0

dϕ |Y m` (ϑ, ϕ)|2 = 1

as can be shown for any central potential. The spherical harmonics are already normalized. In order to
normalize the radial function the simpler integral∫ ∞

0

dr |uk`(r)|2 = 1

can be used.

The energy eigenvalues are negative for bound states and the formula for them

Ek` = − EI

(k + `)2
→ En = −EI

n2
= − µe4

32π2 ε2
0 ~2 n2

according to (6.11) can be simplified by introducing n = k+ `. Because of ` = 0, 1, 2, ... and k = 1, 2, 3, ...
the values for n must be positive integer values. In the ground state n = 1 there is only one possibility
k = 1 and ` = 0, but for the first excited state n = 2 there are two possibilities k = 2 and ` = 0 or k = 1
and ` = 1. This means that one can either label the eigenfunctions ψk`m`

(r) with the quantum number
k or ψn`m`

(r) with the quantum number n. The second option is the most common.

The ground state energy E1 is minus the ionization energy EI and can therefore be written as

E1 = − µe4

32π2 ε2
0 ~2

explicitly. The eigenfunction of the ground state has a single term c0 in the power series expansion
according to (6.18). Thus, v10 = c0 ρ because k = 1 and ` = 0. Going back in the various substitution
steps gives

u10(ρ) = c0 ρ e
−λ10ρ = c0 ρ e

−ρ u10(r) = c0
r

a0
e−r/a0

because λ10 = 1. The result for normalization becomes

1 =

∫ ∞
0

dr |uk`(r)|2 =
|c0|2

a2
0

∫ ∞
0

dr r2 e−2r/a0 =
|c0|2

a2
0

2!

(2/a0)3
= |c0|2

a0

4
⇒ c0 =

2
√
a0

using ∫ ∞
0

dxxp e−αx =
p!

αp+1

with p = 2 and α = 2/a0. Thus, the ground state eigenfunction is

u10(r) =
2√
a3

0

r e−r/a0 ⇒ R10(r) =
2√
a3

0

e−r/a0 ⇒ ψ100(r) =
1√
πa3

0

e−r/a0

and has the quantum numbers k = 1, ` = 0, m` = 0 or, equally, the quantum numbers n = 1, ` = 0,
m` = 0.

The first excited state with n = 2 has the eigenvalue E2 = −EI/4 and the two possibilities k = 2, ` = 0
or k = 1 and ` = 1. The power series solution for k = 2, ` = 0 has the two non-zero coefficients c0 and
c1 = −c0/2 using (6.18). This gives

v20(ρ) = c0 ρ+ c1 ρ
2 = c0

(
ρ− 1

2
ρ2

)
u20(ρ) = c0

(
ρ− 1

2
ρ2

)
e−ρ/2 u20(r) = c0

(
r

a0
− r2

2a2
0

)
e−r/2a0

with the normalization

1 =

∫ ∞
0

dr |u20(r)|2 = |c0|2
∫ ∞

0

dr

(
r2

a2
0

e−r/a0 − r3

a3
0

e−r/a0 +
r4

4a4
0

e−r/a0
)

= 2a0|c0|2 ⇒ c0 =
1√
2a0
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using the same integral as above to determine c0. The result for this case is

u20(r) =
1√
2a0

(
r

a0
− r2

2a2
0

)
e−r/2a0 R20(r) =

1√
2a3

0

(
1− r

2a0

)
e−r/2a0

and the full eigenfunction becomes

ψ200(r) =
1√

8πa3
0

(
1− r

2a0

)
e−r/2a0

for the (k, `,m`) and the (n, `,m`) notation.

The power series solution for k = 1, ` = 1 for the first excited state, on the other hand, has only one
non-zero coefficient c0. Thus, one gets

v11(ρ) = c0 ρ
2 u11(ρ) = c0 ρ

2e−ρ/2 u11(r) = c0
r2

a2
0

e−r/2a0

and normalization gives c0 through

1 =

∫ ∞
0

dr |u11(r)|2 =
|c0|2

a4
0

∫ ∞
0

dr r4 e−r/a0 = 24a0|c0|2 ⇒ c0 =
1√

24a0

again with the same general integral. Undoing the substitutions gives

u11(r) =
1√

24a0

r2

a2
0

e−r/2a0 R11(r) =
1√
24a3

0

r

a0
e−r/2a0

and the three possible eigenfunction in (k, `,m`) notation become

ψ11−1(r) =
1

8
√
πa3

0

r

a0
e−r/2a0 e−iϕ sinϑ

ψ110(r) =
1

4
√

2πa3
0

r

a0
e−r/2a0 cosϑ

ψ111(r) = − 1

8
√
πa3

0

r

a0
e−r/2a0 eiϕ sinϑ

because m` = −1, 0, 1 for ` = 1. In the (n, `,m`) notation they are labeled as ψ21−1(r), ψ210(r), ψ211(r).

To summarize, the ground state with E1 = −EI and the first excited state with E2 = −EI/4 have

(1, 0, 0) : ψ100(r) = R10(r) · Y 0
0 (ϑ, ϕ) =

2√
a3

0

e−r/a0 · 1√
4π

=
1√
πa3

0

e−r/a0

(2, 0, 0) : ψ200(r) = R20(r) · Y 0
0 (ϑ, ϕ) =

1√
8πa3

0

(
1− r

2a0

)
e−r/2a0

(2, 1,−1) : ψ21−1(r) = R21(r) · Y −1
1 (ϑ, ϕ) =

1

8
√
πa3

0

r

a0
e−r/2a0 e−iϕ sinϑ

(2, 1, 0) : ψ210(r) = R21(r) · Y 0
1 (ϑ, ϕ) =

1

4
√

2πa3
0

r

a0
e−r/2a0 cosϑ

(2, 1, 1) : ψ211(r) = R21(r) · Y 1
1 (ϑ, ϕ) = − 1

8
√
πa3

0

r

a0
e−r/2a0 eiϕ sinϑ

(6.19)

in the (n, `,m`) notation. The next excited state with eigenvalue E3 = −EI/9 has the nine eigenfunctions

n = 3, ` = 0 : ψ300(r)

n = 3, ` = 1 : ψ31−1(r), ψ310(r), ψ311(r)

n = 3, ` = 2 : ψ32−2(r), ψ32−1(r), ψ320(r), ψ321(r), ψ322(r)

without the explicit functions. The radial parts of the eigenfunctions for the ground state and the first
excited state are shown in figure 1. The graph of R10(r) for the ground state is given in (a), and the
graphs of R20(r) and R21(r) for the first excited state in (b) and (c), respectively. The first excited state
is fourfold degenerate, and the second excited state is ninefold degenerate.
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Figure 1: The radial part of the eigenfunctions R10(r), R20(r) and R21(r)

6.6 Groundstate of the Hydrogen Atom

The relative Hamiltonian according to (6.8) is

Ĥ =
p̂2

2µ
− 1

4πε0

e2

|r̂|
Ĥ ψk`m`

(r) = Em ψk`m`
(r)

with its eigenvalue equation. In order to determine the ground state energy, the energy eigenvalue can
be expressed as

En = −EI

n2
EI =

µ

2~2

(
e2

4πε0

)2

in terms of the ionization energy (6.9). This gives

E1 = −EI =
µ

2~2

(
e2

4πε0

)2

for the ground state energy. The reduced mass µ is

µ =
mpme

mp +me
= 9.104 · 10−31 kg mp = 1.673 · 10−27 kg me = 9.109 · 10−31 kg

where mp is the proton mass and me the electron mass, and the ground state energy becomes

E1 = −EI = −2.176 · 10−18 J = −13.6 eV e = 1.602 · 10−19 C ε0 = 8.854 · 10−12 m−3 kg−1 s4 A2

given e, ε0, ~ = 1.055 · 10−34 J s and 1 eV = 1.602 · 10−19 J. The negative sign shows that this is a bound
state. Thus, the energy EI = 13.6 eV is needed to unbind the electron from the hydrogen atom in its
ground state, and this is called the ionization energy.

The ground state wave function is

ψn`m`
(r) = Rn`(r)Y

m`

` (ϑ, ϕ)

according to (6.17) for n = 1, ` = 0,m` = 0 where the functions Y m`

` are the spherical harmonics and the
functions Rn` are called the radial part. This gives

ψ100(r) = R10(r) · Y 0
0 (ϑ, ϕ) =

2√
a3

0

e−r/a0 · 1√
4π

=
1√
πa3

0

e−r/a0

as shown in (6.19). The radial part is depicted in figure 1 (a), and Y 0
0 (ϑ, ϕ) is simply a constant. Thus,

the ground state wave function of the hydrogen atom takes its maximal value at the origin of the potential
and then decays away from the origin in an isotropic manner.

The next question is what is the probability P (r) dr of finding the electron around r within the volume
element dr. This probability is

P (r) dr = |ψ100(r)|2 dr = |R10(r)|2
∣∣Y 0

0 (ϑ, ϕ)
∣∣2 dr =

1

πa3
0

e−2r/a0 dr =
1

πa3
0

e−2r/a0 r2 dr sin(ϑ) dϑ dϕ
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using dr = r2 dr sin(ϑ) dϑ dϕ in spherical coordinates. Because the ground state wave function is isotropic
one can ignore the angular part and only look at the radial part by asking what the probability p(r) dr
is of finding the electron in the interval (r, r + dr). It is

p(r) dr = |R10(r)|2 r2 dr

∫ π

0

sin(ϑ) dϑ

∫ 2π

0

∣∣Y 0
0 (ϑ, ϕ)

∣∣2 dϕ = |R10(r)|2 r2 dr

because ∫ π

0

sin(ϑ) dϑ

∫ 2π

0

∣∣Y 0
0 (ϑ, ϕ)

∣∣2 dϕ =
1

4π

∫ π

0

sin(ϑ) dϑ

∫ 2π

0

dϕ = 1

for the angular part. Inserting R10(r) gives

p(r) = |R10(r)|2 r2 =
4

a3
0

r2 e−2r/a0

for the probability density p(r).

The graph on the right side shows the probability density p(r) for the ground
state. Compared to the radial part of the wave function of the ground state
shown in figure 1 (a), it does not have the maximum at the origin but some
distance away from the origin due to the term r2. In order to determine the
position of the maximum, the derivative dp(r)/dr can be set to zero giving

d

dr

(
4

a3
0

r2 e−2r/a0

)
=

8

a3
0

e−2r/a0

(
1− r

a0

)
= 0 ⇒ r = a0

such that the most likely distance of the electron from the proton is the reduced Bohr radius a0 introduced
in (6.9). It therefore describes the typical size of the hydrogen atom. The numerical value of the reduced
Bohr radius is a0 = 5.3 · 10−11 m = 0.53 Å calculated using the values for µ, e, ε0 and ~ presented above.

As a last property of the hydrogen atom the separated contributions of the kinetic and the potential
energy to the energy of the ground state are calculated. The relative Hamiltonian from (6.8) can be
written as Ĥ = T̂ + V̂ . This means

〈Ĥ〉 = 〈ψ100|Ĥ|ψ100〉 = 〈ψ100|E1|ψ100〉 = E1 = −EI

〈Ĥ〉 = 〈T̂ 〉+ 〈V̂ 〉

}
⇒ 〈T̂ 〉+ 〈V̂ 〉 = −EI

in terms of the expectation values. The expectation value 〈V̂ 〉 is

〈V̂ 〉 =

〈
ψ100

∣∣∣∣− 1

4πε0

e2

|r̂|

∣∣∣∣ψ100

〉
= − e2

4πε0

〈
ψ100

∣∣∣∣ 1

|r̂|

∣∣∣∣ψ100

〉
= − e2

4πε0

〈
1

|r̂|

〉
= − e2

4π ε0 a0

using〈
1

|r̂|

〉
=

∫ π

0

sin(ϑ) dϑ

∫ 2π

0

dϕ

∫ ∞
0

r2 dr |ψ100(r)|2) =
4π

πa3
0

1!(
2
a0

)2 =
1

a0

∫ ∞
0

dxxp e−αx =
p!

αp+1

and ψ100(r) from (6.19). Rearranging EI using a0 both from (6.9)

EI =
µ

2~2

(
e2

4πε0

)2

=
e2

8π ε0

(
µ e2

4π ε0 ~2

)
=

e2

8π ε0
a−1

0 =
e2

8π ε0 a0
) = −1

2
〈V̂ 〉

shows that 〈V̂ 〉 = −2EI. This leads to 〈T̂ 〉 = 〈Ĥ〉 − 〈V̂ 〉 = −EI − (−2EI) = EI Thus, the magnitude
of the potential energy contribution to the total energy is twice as large as the contribution from the
kinetic energy for the ground state of the hydrogen atom because 〈V̂ 〉 = −2 〈T̂ 〉. This is an example of
the quantum virial theorem introduced above. This result is not only valid for the ground state of the
hydrogen atom but also for any excited state.
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6.7 Energy Spectrum of the Hydrogen Atom

The relative Hamiltonian of the hydrogen atom is

Ĥ =
p̂2

2µ
− 1

4πε0

e2

|r̂|
Ĥ = − ~2

2µ
∇2 − 1

4πε0

e2

r

in momentum representation (6.8) and in position representation with Ĥ ψk`m`
(r) = Ek` ψk`m`

(r) as the
energy eigenvalue equation (6.16). The quantum numbers are k = 1, 2, 3, ... which is directly associated
with the Hamiltonian eigenvalues and ` = 0, 1, 2, ... as well as m` = −`,−` + 1, ..., ` − 1, ` which are
associated with the angular momentum. Because Ek` is independent of m` it is at least (2` + 1)-fold
degenerate. The degeneracy g` = 2`+ 1 is a direct consequence of the rotational invariance.

There are more degeneracies because the values Ek` only depend on the sum k + ` according to (6.11)
such that Ek1`1 = Ek2`2 for k1 + `1 = k2 + `2. Classically this symmetry is present in any potential that
arises from an inverse square law such as Coulomb’s law of electrostatics and Newton’s law of gravity.
All these potentials conserve what is called the Runge-Lenz vector. There is a corresponding quantity in
quantum mechanics that leads to this additional symmetry. Introducing a new label n as above gives

Ek` =
EI

(k + `)2

n=k+`
=⇒ En =

EI

n2

where n = 1, 2, 3, ... because k = 1, 2, 3, ... and ` = 0, 1, 2, .... For a given n the quantum number ` can
take values ` = 0, 1, ..., n− 1, and

Ĥ ψn`m`
= En ψn`m`

is the corresponding energy eigenvalue equation.

The degeneracy of En is of g` = 2`+ 1 for each possible value of m` giving

gn =

n−1∑
`=0

g` =

n−1∑
`=0

(2`+ 1) = n2

because ` can take any of the n values 0, ..., n− 1. Taking spin into account then the degeneracy doubles.
(Note that this is the non-relativistic hydrogen atom.)

Since the three quantum numbers (n, `,m`) are important they have been named. The quantum number
n is called principal quantum number, ` is called azimuthal quantum number, and m` is called magnetic
quantum number. The last name comes from the fact the energy eigenvalues are degenerate in m` unless
there is a magnetic field.

Figure 2: The first four energy eigenvalues of the hydrogen atom

The first four energy eigenvalues of the hydrogen atom are shown in figure 2 with the principal quantum
number n and the possible azimuthal quantum numbers `. All energy eigenvalues are negative because
they correspond to bound states. All states associated with a given principal quantum number n form
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an atomic shell n. All states in a given atomic shell have one or more atomic subshells `. These subshells
are depicted in this figure in form of a horizontal line. The nomenclature of atomic shells and subshells
from spectroscopy is widely used also for other atoms in physics and chemistry .

Any atom in an excited energy state can transition to a lower energy state by emitting a photon. These
photons are detected in spectroscopy and interpreted. The spectroscopic notation was introduced before
quantum mechanics has been developed. The ` = 0 states are denoted by the letter s coming from the
word “sharp” to describe the observed spectral lines, the ` = 1 states are denoted by the letter p coming
from the word “principal”, the ` = 2 states are denoted by the letter d from “diffuse”, the ` = 3 states
are denoted by the letter f from “fundamental”, and all the following ` states are denoted alphabetically
starting from g. Thus, the horizontal lines in figure 2 are labeled accordingly. The ` = 0 state is 1s for
n = 1, is 2s for n = 2 and so on, the ` = 1 state is 2p for n = 2 and 3p for n = 3 because there is no
` = 1 state for n = 1, and so on.
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