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Abstract

The video channel with the title “Professor M does Science” in YouTube offers a simple step-
by-step but all the same very valuable and rigorous introduction into the world of quantum physics.
This script covers quantum fields and helps to digest the topic covered by a group of those videos
but is not meant as a replacement for them.

8 Quantum Fields

8.1 Quantum Field Operators

A field in physics is a mathematical object that is defined at every point in space, and a quantum field
is a field in quantum mechanics. The quantum field operators to be defined are the basic quantities of
quantum field theory. They are the creation and annihilation operators in the position representation
and allow to create and annihilate particles at any point in space. Two ingredients are needed in order
to determine them.

A change of the basis from {|ui〉} to {|vj〉} for both the bosonic and fermionic creation and annihilation
operators as the first ingredient means

â†vj =
∑
i

〈ui|vj〉 â†ui
âvj =

∑
i

〈vj |ui〉 âui

in the occupation number representation, and the second ingredient for defining the quantum field oper-
ators is the position representation with the eigenvalue equation r̂ |r〉 = r |r〉. As a Hermitian operator
the eigenstates of the position operator |r〉 span an orthonormal basis for the state space where the
orthonormality is written as 〈r|r′〉 = δ(r − r′) using the Dirac delta-function. A state |ϕ〉 is

|ϕ〉 =

∫
d r ϕ(r) |r〉 ϕ(r) = 〈r |ϕ〉

where the expansion coefficient ϕ(r) is called a wave function.

The creation quantum field operator is defined as

â†r =
∑
i

〈ui | r〉 â†ui
=
∑
i

u∗i (r) â
†
ui

〈ui | r〉 = u∗i (r)

by going from the basis {|ui〉} and to the position representation basis {|r〉}. Changing the notation from

â†r to ψ̂†(r) as common in quantum field theory gives

ψ̂†(r) =
∑
i

u∗i (r) â
†
ui
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and

ψ̂†(r) |0〉 =
∑
i

u∗i (r) â
†
ui
|0〉 =

∑
i

〈ui | r〉 |ui〉 =

(∑
i

|ui〉 〈ui|

)
|r〉 = I |r〉 = |r〉

shows that the creation operator indeed creates a particle at position r when acting on the vacuum state.
The annihilation operator is the adjoint of the creation operator and is therefore

ψ̂(r) =

(∑
i

u∗i (r) â
†
ui

)†
=
∑
i

(
u∗i (r) â

†
ui

)†
=
∑
i

ui(r) âui

and it can be shown that it indeed removes a particle at position r.

To summarize, starting from a discrete basis {|ui〉} the corresponding creation and annihilation operators
â†ui

and âui , respectively, have been transformed to the basis {|r〉} of the position eigenstates

ψ̂†(r) =
∑
i

u∗i (r) â
†
ui

ψ̂(r) =
∑
i

ui(r) âui
(8.1)

and are called the quantum field operators or simply the field operators. The expansion coefficients are
the wave functions

u∗i (r) = 〈ui | r〉 ui(r) = 〈r |ui〉

associated with the basis states.

It is often useful to invert the relations (8.1) to go from the quantum field operators to the operators in
the basis {|ui〉}. The derivation of the corresponding expressions just involves the projection of the field
operators onto the basis {|ui〉}. They are given here as

â†ui
=

∫
dr ui(r) ψ̂

†(r) âui
=

∫
dr u∗i (r) ψ̂(r) (8.2)

without derivation.

For particles with spin s, the eigenvalues of the operator ŝz can take any of the (2s+ 1) possible values
−s,−s+ 1,−s+ 2, ..., s− 2, s− 1, s. The spin of the electron, for example, can therefore take one of the
two values − 1

2 and + 1
2 . The position representation for a spin this particles is spanned by the states in

the basis {|r〉}. When working with particles of spin s the augmented basis states labeled by {|r〉 , σ}
are used to describe the position representation, but now each position eigentate is associated with a
particular spin eigenvalue σ where σ can take any of the allowed values −s,−s + 1, ..., s − 1, s. In this
augmented basis of particles with spin, a general quantum state can be written as

|ϕ〉 =

s∑
σ=−s

∫
dr ϕ(r, σ) |r, σ〉

where the wave function ϕ(r, σ) = 〈r, σ |ϕ〉 depends on position and the spin labels. Note that r is
a continuous label leading to an integral and σ is a discrete label leading to a summation. Thus, the
quantum field operators become

ψ̂†σ(r) =
∑
i

u∗i (r, σ) â†ui
ψ̂σ(r) =

∑
i

ui(r, σ) âui (8.3)

given {|ui〉} and {|r〉 , σ}.

8.2 Commutators and Anticommutators of the Quantum Field Operators

The quantum field operators (8.1) describe creation and annihilation of particles in space. Bosonic field
operators obey a set of commutation relations and fermionic field operators obey a set of anticommu-
tation relations. Since the field operators are creation and annihilation operators, they obey the same
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commutation and anticommutation relations of all the other creation and annihilation operators. As
a reminder, the commutator is defined as [Â, B̂] = ÂB̂ − B̂Â, and the anticommutator is defined as
{Â, B̂} = ÂB̂ + B̂Â.

The field operators for bosons obey commutation relations. These relations for creation and annihilation
operators are

[â†ui
, â†uj

] = 0 [âui
, âuj

] = 0 [âui
, â†uj

] = δij

in the basis {|ui〉}. Thus, the commutation relations are

[ψ̂†(r), ψ̂†(r′)] =

∑
i

u∗i (r) â
†
ui
,
∑
j

u∗j (r
′) â†uj

 =
∑
ij

u∗i (r)u
∗
j (r
′) [â†ui

, â†uj
] = 0

[ψ̂(r), ψ̂(r′)] =

∑
i

ui(r) âui ,
∑
j

uj(r
′) âuj

 =
∑
ij

ui(r)uj(r
′) [âui , âuj ] = 0

[ψ̂(r), ψ̂†(r′)] =

∑
i

ui(r) âui ,
∑
j

u∗j (r
′) â†uj

 =
∑
ij

ui(r)u
∗
j (r
′) [âui , â

†
uj

] =
∑
ij

ui(r)u
∗
j (r
′) δij

=
∑
i

ui(r)u
∗
i (r
′) =

∑
i

〈r |ui〉 〈ui | r′〉 = 〈r|

(∑
i

|ui〉 〈ui|

)
|r′〉 = 〈r| I |r′〉

= 〈r | r′〉 = δ(r − r′)

in the basis {|r〉}. The anticommutator relations for fermions can be derived similarly. To summarize,
the commutation relations are

[ψ̂†(r), ψ̂†(r′)] = 0 [ψ̂(r), ψ̂(r′)] = 0 [ψ̂(r), ψ̂†(r′)] = δ(r − r′) (8.4)

for the bosonic field operators, and the anticommutator relations are

{ψ̂†(r), ψ̂†(r′)} = 0 {ψ̂(r), ψ̂(r′)} = 0 {ψ̂(r), ψ̂†(r′)} = δ(r − r′) (8.5)

for the fermionic field operators. These results are expected for a continuous basis.

The two relations for the bosons and the fermions show certain similarities, and they can with

[Â, B̂]−η = ÂB̂ − η B̂Â η =

{
+1 bosons

−1 fermions

be combined into a compact expression such that

[ψ̂†(r), ψ̂†(r′)]−η = 0 [ψ̂(r), ψ̂(r′)]−η = 0 [ψ̂(r), ψ̂†(r′)]−η = δ(r − r′)

cover the relations for bosons and fermions. In this compact form, the commutation and anticommutation
relations for the field operators with spin σ = −s,−s+ 1, ..., s− 1, s are

[ψ̂†σ(r), ψ̂†σ′(r
′)]−η = 0 [ψ̂σ(r), ψ̂σ′(r′)]−η = 0 [ψ̂σ(r), ψ̂†σ′(r

′)]−η = δ(r − r′) δσσ′

using (8.3) in the orthonormal basis {|r〉 , σ} such that 〈r, σ | r′, σ′〉 = δ(r − r′) δσσ′

8.3 Operators in Terms of Quantum Field Operators

The quantum field operators (8.1) are the building blocks for quantum field theory. As such all relevant

quantities should be expressed in terms of these two field operators ψ̂†(r) that creates a particle at

position r and ψ̂(r) that annihilates a particle at position r. The commutation and anticommutation
relations in (8.4) and (8.5) belong to bosons and fermions, respectively.
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The operators in quantum field theory generally act on systems with many identical particles, and one-
body operators among them act on one particle at a time. Given the single-particle state space Vq
and an operator f̂q acting on it, the operator I1 ⊗ I2 ⊗ ... ⊗ f̂q ⊗ ... ⊗ IN acts on the full state space
V = V1 ⊗ V2 ⊗ ...⊗ Vq ⊗ ...⊗ VN of the N -particle system but its action only affects one particle in the

subspace Vq. For simplicity one writes just f̂q instead of I1 ⊗ I2 ⊗ ... ⊗ f̂q ⊗ ... ⊗ IN . In the context is

should be clear whether f̂q acts on the state space Vq only or on the full N -particle state space V but
only affects particles in Vq while the identity operators Iq′ leave the particle in Vq′ with q′ 6= q untouched.

One can build a symmetric one-body operator F̂ acting on the full state space V

F̂ =

N∑
q=1

f̂q

defined as the sum over all particles of the individual operators acting on each of the individual particles.
This one-body operator acts on all particles but does so by acting on each particle separately. Operators
of this form are very common for the description of quantum systems. The kinetic energy operator is an
example.

In the basis {|ui〉} the operator F̂ can be written as

F̂ =

N∑
q=1

f̂q =
∑
ij

〈ui | f̂ |uj〉 â†ui
âuj =

∑
ij

fij â
†
ui
âuj

where fij are the matrix elements in a more compact form. In terms of the field operators the one-body
operator becomes

F̂ =

∫
dr1

∫
dr2 〈r1| f̂ | r2〉 ψ̂†(r1) ψ̂(r2) (8.6)

because the field operators are nothing more than a continuous version of the creation and annihilation
operators in the basis {|r〉}.

It is a good exercise to convert the one-body operator from the discrete basis {|ui〉} to the continuous
basis {|r〉}. Thus, inserting (8.2)

F̂ =
∑
ij

〈ui | f̂ |uj〉 â†ui
âuj

=
∑
ij

〈ui | f̂ |uj〉
(∫

dr1 〈r1|ui〉 ψ̂†(r1)

)(∫
dr2 〈uj | r2〉 ψ̂(r2)

)

=

∫
dr1

∫
dr2 〈r1|

(∑
i

|ui〉 〈ui|

)
f̂

∑
j

|uj〉 〈uj |

 |r2〉 ψ̂†(r1) ψ̂(r2)

=

∫
dr1

∫
dr2 〈r1|If̂I| r2〉 ψ̂†(r1) ψ̂(r2) =

∫
dr1

∫
dr2 〈r1| f̂ | r2〉 ψ̂†(r1) ψ̂(r2)

gives the result in (8.6).

The other important type of operators in quantum field theory are the two-body operators used, for
example, for the Coulomb interaction between two charged particles. A two-body operator has the form

Ĝ =
1

2

N∑
q,q′=1
q 6=q′

ĝqq′

where ĝqq′ acts on Vq ⊗ Vq′ . This operator is

Ĝ =
1

2

∑
ijk`

1〈ui|2〈uj | ĝ12 |uk〉1 |u`〉2 â
†
ui
â†uj

âu`
âuk

in the discrete basis {|ui〉}, and the two-body operator becomes

Ĝ =
1

2

∫
dr1

∫
dr2

∫
dr3

∫
dr41〈r1|2〈r2| ĝ12 |r3〉1 |r4〉2 ψ̂

†(r1) ψ̂†(r2) ψ̂(r4) ψ̂(r3) (8.7)
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in the continuous basis {|r〉}. Note that the matrix elements are in the order uk, u` and r3, r4, respectively,
but the order in the creation and annihilation operators is u`, uk and r4, r3, respectively.

To understand the one-body and the two-body operator conceptually, one can look at the field operators
at the end of the two expressions. To understand the one-body and two-body operators, one can first look
at the field operators. The integrand of the one-body operator involves an annihilation of a particle at
position r2 and immediate creation of a particle at position r1. This process is associated with the matrix

elements 〈r1| f̂ | r2〉 giving the relative amplitude associated with this transition. Thus, a very natural
way to interpret this expression is in terms of scatterings of particles from a position r2 to a position
r1 with each transition associated with a certain amplitude given by the corresponding matrix elements.
The full one-body operator includes all scatterings for single particles from all possible starting positions
to all possible final positions, and each is associated with its own amplitude. All one-body operators have
this form and they only differ in the matrix elements which determine the relative importance of each
scattering event.

The two-body operator can be understood in a similar way. It describes the scattering of two particles
at position r3 and r4 to the new positions at r1 and r2. Again the amplitude of this process is associated
with the corresponding matrix element 1〈r1|2〈r2| ĝ12 |r3〉1 |r4〉2. From this point of view, the one-body
operator involves the scattering of individual particles while two-body operators involve the scattering of
pairs of particles.

The one-body and the two-body operator become

F̂ =

s∑
σ1=−s

s∑
σ2=−s

∫
dr1

∫
dr2 〈r1, σ1| f̂ | r2, σ2〉 ψ̂†σ1

(r1) ψ̂σ2(r2)

Ĝ =
1

2

s∑
σ1=−s

s∑
σ2=−s

s∑
σ3=−s

s∑
σ4=−s

∫
dr1

∫
dr2

∫
dr3

∫
dr4

1〈r1, σ1|2〈r2, σ2| ĝ12 |r3, σ3〉1 |r4, σ4〉2 ψ̂
†
σ1

(r1) ψ̂†σ2
(r2) ψ̂σ4(r4) ψ̂σ3(r3)

(8.8)

when including the spin σ for particles with spin. The basic states |r, σ〉 include now both position and
spin.

As an example the operator f̂ = |r〉〈r| is used. To see what this operator does, consider the expectation
value

〈ϕ | f̂ |ϕ〉 = 〈ϕ | r〉〈r |ϕ〉 = ϕ∗(r)ϕ(r) = |ϕ(r)|2

where 〈r |ϕ〉 is the state in the position representation which is the wave function ϕ(r). This is the
probability distribution of finding the quantum particle at a given location in space. Thus, the operator
f̂ is associated with the local single-particle density at position r, and it can be written as f̂ = n̂(r) in
the usual form.

The associated local particle density one-body operator for a system of N identical particles

F̂ =

N∑
q=1

|r〉qq〈r|

is

F̂ =
∑
ij

〈ui | r〉〈r |uj〉 â†ui
âuj

=
∑
ij

u∗i (r)uj(r) â
†
ui
âuj

in the basis {|ui〉} and

F̂ =

∫
dr1

∫
dr2 〈r1 | r〉〈r | r2〉 ψ̂†(r1)ψ̂(r2) =

∫
dr1

∫
dr2 δ(r1 − r) δ(r − r2) ψ̂†(r1)ψ̂(r2) = ψ̂†(r) ψ̂(r)

in the position basis {r}. Thus, the local particle density operator in terms of field operators take a
particularly simple form. It annihilates a particle at position r and then it creates it at the same point.
In another basis, the expression looks less simple.
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8.4 The Hamiltonian Operator

The Hamiltonian operator is associated with the total energy of a given quantum system. One of its
key features is that it drives the time evolution of quantum systems. When studying systems of many
identical quantum particles the formalism derived above will be used.

The Hamiltonian of a system of N identical particles Ĥ consists of the three terms T̂ for the kinetic
energy, V̂ for the external potential and Ŵ for the pairwise interaction term between the particles of the
system. The three terms of the Hamiltonian Ĥ = T̂ + V̂ + Ŵ are

T̂ =

N∑
q=1

t̂q t̂ =
p̂2

2m
V̂ =

N∑
q=1

v̂q v̂ = v(r̂) Ŵ =
1

2

N∑
q,q′=1
q 6=q′

ŵqq′ ŵ12 = w(r̂1, r̂2) (8.9)

where v̂ can be anything from an applied field to the Coulomb potential from surrounding atomic nuclei,
and where two widely used examples for the pairwise interaction between two particles are

1

4πε0

e2

|r1 − r2|
− g2 e

αm|r1−r2|

|r1 − r2|

the Coulomb potential on the left side and the Yukawa potential on the right side. (Note that they are
both only dependent on |r1 − r2|.)

The Hamiltonian can be written in terms of the occupation number representation. Given a basis {|ui〉}
and the creation and annihilation operators (for bosons or fermions) â†ui

and âui
, respectively, a one-body

operator can be written in the form

F̂ =

N∑
q=1

f̂q =
∑
ij

〈ui| f̂ |uj〉 â†ui
âuj

as shown above. Thus,

T̂ =

N∑
q=1

t̂q =
∑
ij

〈ui| t̂ |uj〉 â†ui
âuj

V̂ =

N∑
q=1

v̂q =
∑
ij

〈ui| v̂ |uj〉 â†ui
âuj

are the two one-body terms in the Hamiltonian Ĥ. A two-body operator has the form

Ĝ =
1

2

N∑
q,q′=1
q 6=q′

ĝqq′ =
∑
ijk`

1〈ui|2〈uj | ĝ |uk〉1 |u`〉2 â
†
ui
â†uj

âu`
âuk

according as introduced above. The interaction term of the Hamiltonian becomes

Ŵ =
1

2

N∑
q,q′=1
q 6=q′

ŵqq′ =
1

2

∑
ijk`

1〈ui|2〈uj | ŵ |uk〉1 |u`〉2 â
†
ui
â†uj

âu`
âuk

without the subindices of the operator ŵ to simplify notation. The Hamiltonian of N identical particles
is therefore

Ĥ = T̂ + V̂ + Ŵ =

N∑
q=1

t̂q +

N∑
q=1

v̂q +
1

2

N∑
q,q′=1
q 6=q′

ŵqq′

=
∑
ij

〈ui| t̂ |uj〉 â†ui
âuj

+
∑
ij

〈ui| v̂ |uj〉 â†ui
âuj

+
1

2

∑
ijk`

1〈ui|2〈uj | ŵ |uk〉1 |u`〉2 â
†
ui
â†uj

âu`
âuk

(8.10)

in terms of the occupation number representation.
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The two one-body terms T̂ and V̂ lead usually to rather simple calculations, but the two-body term Ŵ
is often extremely challenging to evaluate. A useful starting point to study a Hamiltonian like this is to
first write it down in the basis defined by the eigenstates of the non-interacting part of the Hamiltonian.
It facilitates the development of approximate methods for the interacting part. In order to separate the
one-body operators from the two-body operators the Hamiltonian is split into the two parts Ĥ0 = T̂ + V̂
and Ŵ .

The non-interacting Hamiltonian Ĥ0 can be written as

Ĥ0 =
∑
ij

〈ui| (t̂+ v̂) |uj〉 â†ui
âuj

=
∑
ij

〈ui| ĥ0 |uj〉 â†ui
âuj

with ĥ0 = t̂ + v̂. Because ĥ0 is a Hermitian operator, the eigenstates |vk〉 from the eigenvalue equation

ĥ0 |vk〉 = Ek |vk〉 span a basis of the full state space. The non-interacting Hamiltonian becomes

Ĥ0 =
∑
k`

〈vk| ĥ0 |v`〉 â†vk âv` =
∑
k`

E` 〈vk|v`〉 â†vk âv` =
∑
k`

E`δk` â
†
vk
âv` =

∑
k

Ek â
†
vk
âvk =

∑
k

Ek n̂vk

with the number operator n̂vk in the orthonormal basis of the eigenstates {|vi〉}. In the basis of its own

eigenstates the non-interacting Hamiltonian Ĥ0 takes a very simple form. All it does is count the number
of particles in each state and scale that by the associated energies.

The full Hamiltonian is

Ĥ =
∑
ij

〈ui| ĥ0 |uj〉 â†ui
âuj

+
1

2

∑
ijk`

1〈ui|2〈uj | ŵ |uk〉1 |u`〉2 â
†
ui
â†uj

âu`
âuk

in the basis {|ui〉} and becomes

Ĥ =
∑
k

Ek n̂vk +
1

2

∑
ijk`

1〈vi|2〈vj | ŵ |vk〉1 |v`〉2 â
†
vi â
†
vj âv` âvk

in the basis {|vi〉}. The one-body term has been simplified but the two-body term still has the same
complicated form. This is one of the outstanding challenges in physics. A good progress can be made
with this form using suitable approximations.
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