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Abstract

The video channel with the title “Professor M does Science” in YouTube offers a simple step-by-
step but all the same very valuable and rigorous introduction into the world of quantum mechanics.
This script covers the postulates of quantum physics and helps to digest the topic covered by a group
of those videos but is not meant as a replacement for them.

1 The Postulates of Quantum Mechanics

1.1 State Space, Dual Space and Dirac Notation

State space is the name for the vector space in which the quantum systems exist. The three-dimensional
Euclidean space R3 is the space for classical physics. State space can have any finite or infinite dimensions,
and its vectors are described by complex numbers and not by real numbers. Euclidean spaces and state
spaces are called Hilbert spaces and have an inner product called scalar product.

Postulate I: The state of a physical system is characterized by a state vector that belongs to a complex
vector space V which is called the state space of the system.

Elements in the Euclidean space R3 are called vectors, are written as r and satisfy the laws of addition
as well as the laws of scalar multiplication with a ∈ R. Similarly, elements of the state space V are called
“ket”, are written as |ψ〉 in the Dirac notation, and satisfy the laws of addition as well as the laws of
multiplication with a scalar a ∈ C. The laws of vector addition and scalar product are on the left side
for Euclidean vectors r and on the right side for state vectors |ψ〉

r1 + r2 = r3 ∈ R3 |ψ1〉+ |ψ2〉 = |ψ3〉 ∈ V
r1 + r2 = r2 + r1 |ψ1〉+ |ψ2〉 = |ψ2〉+ |ψ1〉
(r1 + r2) + r3 = r1 + (r2 + r3) (|ψ1〉+ |ψ2〉) + |ψ3〉 = |ψ1〉+ (|ψ2〉+ |ψ3〉)
0 + r = r 0 + |ψ〉 = |ψ〉
r + (−r) = 0 |ψ〉+ (− |ψ〉) = 0

ar ∈ R3 a |ψ〉 ∈ V
a1(a2r) = (a1a2)r a1(a2 |ψ〉) = (a1a2) |ψ〉
(a1 + a2)r = a1r + a2r (a1 + a2) |ψ〉 = a1 |ψ〉+ a2 |ψ〉
a(r1 + r2) = ar1 + ar2 a(|ψ1〉+ |ψ2〉) = a |ψ1〉+ a |ψ2〉
1r = r 1 |ψ〉 = |ψ〉

with the null vector 0 and the inverse −r for the Euclidean space, as well as the null ket 0 and the inverse
ket − |ψ〉 for the state space.

The scalar product SP (r1, r2) = c ∈ R in Euclidean space has the properties

1. Conjugation: SP (r1, r2) = SP (r2, r1)
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2. Linearity:
SP (r1, ar2) = aSP (r1, r2), SP (ar1, r2) = aSP (r1, r2)
SP (r1, r2 + r3) = SP (r1, r2) + SP (r1, r3)

3. Positivity: SP (r, r) ≥ 0 and SP (r, r) = 0⇔ r = 0

where SP (r1, r2) is usually written as r1 ·r2 with r·r = |r|2. Similarly, the scalar product SP (|ψ〉 , |ϕ〉) = c
with c ∈ C for the state space V has the properties

1. Conjugation: SP (|ψ〉 , |ϕ〉) = [SP (|ϕ〉 , |ψ〉)]∗
2. Linearity and antilinearity:
SP (|ψ〉 , a |ϕ〉) = aSP (|ψ〉 , |ϕ〉) ⇒ is linear in the second argument
SP (a |ψ〉 , |ϕ〉) = [SP (|ϕ〉 , a |ψ〉)]∗ = a∗[SP (|ϕ〉 , |ψ〉]∗ = a∗ SP (|ψ〉 , |ϕ〉) ⇒ is antilinear in the first
argument
SP (|ψ〉 , |ϕ〉+ |χ〉) = SP (|ψ〉 , |ϕ〉) + SP (|ψ〉 , |χ〉)

3. Positivity: SP (|ψ〉 , |ψ〉) ≥ 0 and SP (|ψ〉 , |ψ〉) = 0⇔ |ψ〉 = 0

where the differences to the Euclidean space comes from the fact that the scalar product here is a complex
number where c∗ is the complex conjugate of c.

The scalar product in Euclidean space can be written as

SP (r1, r2) = r1 · r2 = (x1, y1, z1)


x2

y2

z2

 = x1x2 + y1y2 + z1z2

where the vector r1 is a “row” vector and r2 is a “column” vector. Since one cannot add a row vector and
a column vector, they must belong to different vector spaces. This distinction between row and column
vectors is important in the state space. The column vectors belong to the vector space and the row vector
belongs to the dual space.

In terms of linear maps the row vector maps a column vector to a scalar. Thus, SP (r1, ·) maps r2 to
a scalar c. In this language the row vector, and equivalently SP (r1, ·), are objects that act on column
vectors in the vector space. There is a one-to-one correspondence between column and row vectors, and
therefore there is a one-to-one correspondence between vectors and linear maps. It can be shown by
checking the defining properties above for a vector space that the set SP (r1, ·) of linear maps forms a
vector space. Thus, the dual space is in other words the vector space made of the linear maps that act
on the original vector space.

Similarly, for the state space SP (|ψ〉 , ·) is an element of the dual space which is written as 〈ψ| and called
“bra” in the Dirac terminology. A ket |ψ〉 ∈ V corresponds to a bra 〈ψ| ∈ V∗ where V∗ is the dual space.
This correspondence is written as |ψ〉 ↔ 〈ψ| in the following. The scalar product SP (|ψ〉 , |ϕ〉) can be
written as a “bra(c)ket” in the form 〈ψ|ϕ〉. A subtlety comes from the fact that a is complex and that
the scalar product is antilinear in the first argument such that a |ψ〉 corresponds to a∗ 〈ψ|.

1.2 Operators in Quantum Mechanics

An operator is the mathematical object that allows to describe physical properties in quantum mechanics.
The position operator x̂, for example, specifies where the particle is in space, the momentum operator p̂
tells what the momentum of the particle is, and Ĥ is the energy operator called Hamiltonian.

Postulate II: A physical quantity A is described by an operator Â acting on the state space V, and this
operator is an observable.

This means that operators act on kets as Â |ψ〉 = |ψ′〉 where |ψ〉 , |ψ′〉 ∈ V. Operators in quantum
mechanics act on superpositions of kets as

Â
(
a1 |ψ1〉+ a2 |ψ2〉

)
= a1 Â |ψ1〉+ a2 Â |ψ2〉

where |ψ1〉 , |ψ2〉 ∈ V and a1, a2 ∈ C. They are therefore called linear operators.

Operators have the properties for addition
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- Associativity: (Â+ B̂) + Ĉ = Â+ (B̂ + Ĉ)
- Commutativity: Â+ B̂ = B̂ + Â

and the property for multiplication

- Associativity: (ÂB̂)Ĉ = Â(B̂Ĉ)

where multiplication is defined as (ÂB̂) |ψ〉 = Â(B̂ |ψ〉) = Â |ψ′〉 for |ψ′〉 = B̂ |ψ〉. However, multiplication
is usually not commutative such that ÂB̂ 6= B̂Â, and this leads to the definition of the commutator[

Â, B̂
]

= ÂB̂ − B̂Â (1.1)

for two operators Â and B̂. Operators that do not commute are associated with physical properties that
cannot be measured simultaneously. An example for operators that do not commute are the position and
the momentum operators, and therefore the position and momentum operators of a particle can never be
measured simultaneously.

The scalar product of |ψ〉 with Â |ϕ〉 = |ϕ′〉 is 〈ψ|ϕ′〉 = c ∈ C. In Dirac notation, the two scalar products
of 〈ψ| with Â |ϕ〉 and 〈ψ| Â with |ϕ〉 are by definition the same and one can write 〈ψ|Â|ϕ〉. This object
is called the matrix element of the operator Â with respect to ψ and ϕ. One can think of the operator
Â as either acting on the ket |ϕ〉 to the right or acting on the bra 〈ψ| to the left. However, only the
way an operator acts on a ket has been defined so far. Thus, the adjoint operator Â† has to be defined
using the one-to-one correspondence between a ket |ψ〉 and a bra 〈ψ| and therefore the correspondence
|ψ′〉 = Â |ψ〉 ↔ 〈ψ′| = 〈ψ| Â†.

The adjoint operator is linear because

〈ψ| = a1 〈ψ1|+ a2 〈ψ2| ↔ |ψ〉 = a∗1 |ψ1〉+ a∗2 |ψ2〉
Â |ψ〉 = Â

(
a∗1 |ψ1〉+ a∗2 |ψ2〉

)
= a∗1 Â |ψ1〉+ a∗2 Â |ψ2〉

a∗1 |ψ′1〉+ a∗2 |ψ′2〉 ↔ a1 〈ψ′1|+ a2 〈ψ′2| = a1 〈ψ1| Â† + a2 〈ψ2| Â†

|ψ′〉 ↔ 〈ψ′| = 〈ψ| Â†

〈ψ| Â† =
(
a1 〈ψ1|+ a2 〈ψ2|

)
Â† = a1 〈ψ1| Â† + a2 〈ψ2| Â†

using Â |ψ1〉 = |ψ′1〉, Â |ψ2〉 = |ψ′2〉 and Â |ψ〉 = |ψ′〉. Other properties of the adjoint operators are

〈ψ|Â†|ϕ〉 = 〈ϕ|Â|ψ〉
∗ (

Â†
)†

= Â
(
aÂ
)†

= a∗Â†
(
Â+ B̂

)†
= Â† + B̂†

(
ÂB̂
)†

= B̂†Â†

and can be easily proven given the definition of the operator. From 〈ψ′|ϕ〉 = 〈ϕ|ψ′〉∗ and Â |ψ〉 = |ψ′〉 as

well as 〈ψ| Â† = 〈ψ′| follows 〈ψ|Â†|ϕ〉 = 〈ϕ|Â|ψ〉
∗

and from that follow further the other statements

〈ψ|
(
Â†
)†
|ϕ〉 = 〈ϕ|Â†|ψ〉

∗
=
(
〈ψ|Â|ϕ〉

∗)∗
= 〈ψ|Â|ϕ〉 ⇒

(
Â†
)†

= Â

〈ψ|
(
aÂ
)†|ϕ〉 = 〈ϕ|aÂ|ψ〉

∗
= a∗ 〈ϕ|Â|ψ〉

∗
= a∗ 〈ψ|Â†|ϕ〉 = 〈ψ|a∗Â†|ϕ〉 ⇒

(
aÂ
)†

= a∗Â†

〈ψ|
(
Â+ B̂

)†|ϕ〉 = 〈ϕ|
(
Â+ B̂

)
|ψ〉
∗

= 〈ϕ|Â|ψ〉
∗

+ 〈ϕ|B̂|ψ〉
∗

= 〈ψ|Â†|ϕ〉+ 〈ψ|B̂†|ϕ〉 = 〈ψ|
(
Â† + B̂†

)
|ϕ〉 ⇒

(
Â+ B̂

)†
= Â† + B̂†

|ψ′〉 = ÂB̂ |ψ〉 = Â |χ〉 , 〈ψ′| = 〈ψ|
(
ÂB̂
)†

= 〈χ| Â† =
(
〈ψ| B̂†

)
Â† = 〈ψ| B̂†Â† ⇒

(
ÂB̂
)†

= B̂†Â†

by using the definition of the operators, the definition of the adjoint operator and the dual space.

Given 〈ψ| ∈ V∗ and |ϕ〉 ∈ V the inner product (or scalar product) is defined as 〈ψ|ϕ〉 ∈ C as introduced
above. The question is whether |ϕ〉 〈ψ| has a meaning, and the answer is yes. This is called the outer
product and represents an operator because it gives a ket when applied to a ket(

|ϕ〉 〈ψ|
)
|χ〉 = |ϕ〉

(
〈ψ|χ〉

)
= a |ϕ〉 a = 〈ψ|χ〉 ∈ C

and this is exactly what defines an operator. One can easily check that (|ϕ〉〈ψ|)† = |ψ〉〈ϕ|.

Two subsets of operators are of special importance in quantum physics. The Hermitian operators have
the property Â = Â†, and the unitary operators are defined by Â−1 = Â† or by Â†Â = I where the
operator I is the identity operator defined by I |ψ〉 = |ψ〉 for all |ψ〉.
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1.3 Representations

To work with a vector space one has to represent its vectors in a convenient basis. The physics of the
problem is independent of the chosen representation but the mathematics can be made much simpler by
choosing a good representation. Thus, representations allow to go from the abstract space state to the
concrete mathematics to solve actual quantum mechanical problems. One defines a representation in a
state space through an orthonormal basis that spans the full space. A set of kets {|uj〉} is orthonormal
if 〈uj |uk〉 = δjk and forms a basis if there is a unique expansion

|ψ〉 =
∑
j

cj |uj〉

for every ket |ψ〉 in the state space where the numbers cj ∈ C are called expansion coefficients.

The projection

〈uk|ψ〉 = 〈uk|

∑
j

cj |uj〉

 =
∑
j

cj 〈uj |uk〉 = ck

of |ψ〉 on the basis vectors gives the expansion coefficients for an orthonormal basis. The coefficients {cj}
are called the representation of |ψ〉 in the {|uj〉} basis. In the two-dimensional Euclidean space with the
orthonormal basis {~x, ~y} such that ~x · ~x = ~y · ~y = 1 and ~x · ~y = 0 every vector ~r can be represented in a
similar way as ~r = a~x+ b ~y where the coefficients a and b

~x · ~r = a~x · ~x+ b ~x · ~y = a ~y · ~r = a ~y · ~x+ b ~y · ~y = b

are determined by projecting ~r onto the basis vectors.

The closure relation following from

|ψ〉 =
∑
j

〈uj |ψ〉 |uj〉 =
∑
j

|uj〉 〈uj |ψ〉 =

∑
j

|uj〉〈uj |

 |ψ〉
states that ∑

j

|uj〉〈uj | = I (1.2)

because the operator
∑
j |uj〉〈uj | leaves |ψ〉 invariant. The result (1.2) is also called the resolution of the

identity.

Knowing the representation of kets, the two questions remain how bras and operators are represented.
Using (1.2) and 〈ψ| ∈ V∗

〈ψ| = 〈ψ| I = 〈ψ|

∑
j

|uj〉〈uj |

 =
∑
j

〈ψ|uj〉 〈uj | =
∑
j

〈uj |ψ〉∗ 〈uj | =
∑
j

c∗j 〈uj |

using the conjugation property of the scalar product. To gain the representation for operators

Â |ψ〉 = |ψ′〉 |ψ〉 =
∑
j

cj |uj〉 cj = 〈uj |ψ〉 |ψ′〉 =
∑
j

c′j |uj〉 c′j = 〈uj |ψ′〉

is used in

c′j = 〈uj |ψ′〉 = 〈uj |Â|ψ〉 = 〈uj |Â I|ψ〉 = 〈uj |Â

(∑
k

|uk〉〈uk|

)
|ψ〉 =

∑
k

〈uj |Â|uk〉 〈uk|ψ〉

|ψ′〉 =
∑
j

(∑
k

〈uj |Â|uk〉 〈uk|ψ〉

)
|uj〉 =

∑
jk

|uj〉 〈uj |Â|uk〉 〈uk|

 |ψ〉
4



showing that

Â =
∑
jk

Ajk |uj〉〈uk| Ajk = 〈uj |Â|uk〉

meaning that the numbers Ajk represent the operator Â in the given basis. As an example the identity
operator I is used

(I)jk = 〈uj |I|uk〉 = 〈uj |uk〉 = δjk ⇒ I =
∑
jk

(I)jk |uj〉〈uk| =
∑
jk

δjk |uj〉〈uk| =
∑
j

|uj〉〈uj |

and this is the same as (1.2). To summarize, kets, bras and operators are represented as

|ψ〉 =
∑
j

cj |uj〉 cj = 〈uj |ψ〉

〈ψ| =
∑
j

c∗j 〈uj | c∗j = 〈ψ|uj〉

Â =
∑
jk

Ajk |uj〉〈uk| Ajk = 〈uj |Â|uk〉

(1.3)

in the orthonormal basis {|uj〉}.

The case of a basis {|uj〉} with a discrete index j can be generalized to a basis {|vα〉} with a continuous
index α. Sums become integrals and the Kronecker delta becomes a Dirac delta function. This means

〈uj |uk〉 = δjk ⇒ 〈vα|vβ〉 = δ(α− β)

|ψ〉 =
∑
j

cj |uj〉 ck = 〈uk|ψ〉 ⇒ |ψ〉 =

∫
dα c(α) |vα〉 c(β) = 〈vβ |ψ〉

Â =
∑
jk

Ajk |uj〉〈uk| Ajk = 〈uj |Â|uk〉 ⇒ Â =

∫
dα

∫
dβ A(α, β) |vα〉〈vβ | A(α, β) = 〈vα|Â|vβ〉

where

〈vβ |ψ〉 =

∫
dα c(α) 〈vβ |vα〉 =

∫
dα c(α)δ(vβ − vα) = c(β)

guarantees that delta functions are only used under an integral. The spin of a particle is an example of
a discrete state space and the position is an example of a continuous state space.

1.4 Matrix Formulation of Quantum Mechanics

Matrix mechanics was the first consistent formulation of quantum theory, and it was first proposed by
Heisenberg, Born and Jordan in 1925. It is equivalent to the later wave mechanics of Schrödinger, and
they are unified in the state space formalism. The matrix formulation is very useful in the case of finite
discrete bases.

In this formalism kets are written as column vectors, bras are written as row vectors, and operators are
written as matrices

|ψ〉 =



c1

c2
...

cj
...


〈ψ| =

(
c∗1 c∗2 . . . c∗j . . .

)
Â =



A11 A12 . . . A1k . . .

A21 A22 . . . A2k . . .
...

...
...

Aj1 Aj2 . . . Ajk . . .
...

...
...

. . .
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where cj = 〈uj |ψ〉, c∗j = 〈ψ|uj〉 and Ajk = 〈uj |Â|uk〉. In this formalism all manipulations of objects in
quantum mechanics such as

〈ψ|ϕ〉 |ψ′〉 = Â |ψ〉 Â† |ψ〉〈ϕ|

can be performed as

〈ψ|ϕ〉 =

∑
j

c∗j |uj〉

(∑
k

dk |uk〉

)
=
∑
jk

c∗jdk 〈uj |uk〉 =
∑
j

c∗jdj =
(
c∗1 c∗2 . . .

)
d1

d2

...


c′j = 〈uj |ψ′〉 = 〈uj |Â|ψ〉 = 〈uj |Â

(∑
k

|uk〉〈uk|

)
|ψ〉 =

∑
k

〈uj |Â|uk〉 〈uk|ψ〉 =
∑
k

Ajkck

=


A11 A12 . . .

A21 A22 . . .
...

...



c1

c2
...

 =


c′1

c′2
...


(Â†)jk = 〈uj |Â†|uk〉 = 〈uk|Â|uj〉

∗
= A∗kj

|ψ〉〈ϕ| =

∑
j

cj |uj〉

(∑
k

d∗k 〈uk|

)
=
∑
jk

cjd
∗
k |uj〉〈uk| =


c1

c2
...

(d1 d2 . . .
)

=


c1d
∗
1 c1d

∗
2 . . .

c2d
∗
1 c2d

∗
2 . . .

...
...


according to the rules of matrix multiplication, and this shows that the adjoint matrix is the transpose
conjugate matrix.

Changing from one basis {|uj〉} to another basis {|vk〉} is an essential process in matrix mechanics. With
cj = 〈uj |ψ〉 and dk = 〈vk|ψ〉 as the coefficients in the two bases one gets

dk = 〈vk|ψ〉 = 〈vk|I|ψ〉 = 〈vk|

∑
j

|uj〉〈uj |

 |ψ〉 =
∑
j

〈vk|uj〉 〈uj |ψ〉 =
∑
j

Skjcj

where Skj is defined as 〈vk|uj〉 and is called the overlap matrix. Thus, changing from {|uj〉} to {|vk〉} uses
Skj = 〈vk|uj〉. Changing from {|vk〉} to {|uj〉} can be calculated similarly and shows that the overlap
matrix is S∗kj because 〈uj |vk〉 = 〈vk|uj〉∗ = S∗kj .

Operators change when going from {|uj〉} to {|vk〉} as

Aujm = 〈uj |Â|um〉 Avkn = 〈vk|Â|vn〉

and transform as

Avkn =
∑
jm

〈vk|uj〉 〈uj |Â|um〉 〈um|vn〉 =
∑
jm

SkjA
u
jmS

∗
nm

as can be shown using the resolution of the identity (1.2) twice.

1.5 Eigenvalues and Eigenvectors of Operators

Operators are the mathematical objects that allow to represent physical observables in quantum mechan-
ics. If one measures a physical observable the only possible outcome of this measurement is one of the
eigenvalues of the associated operator. After one has measured this property, the state of the system is
the eigenstate of the operator corresponding to the measured eigenvalue.

Postulate III: The result of a measurement of a physical quantity is one of the eigenvalues of the
associated observable.
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An operator acts as Â |ψ〉 = |ψ′〉 and therefore takes a ket and returns a ket. If the only change for a
specific ket is that the ket is scaled by some factor such that Â |ψ〉 = λ |ψ〉 with λ ∈ C. The equation

Â |ψ〉 = λ |ψ〉 λ ∈ C (1.4)

is called the eigenvalue equation for the operator Â. A ket |ψ〉 satisfying equation (1.4) is called a
eigenstate, eigenket or eigenvector of operator Â, and λ is called an eigenvalue of Â. The eigenvectors
are those special directions in a vector space which the operator does not change. The set of eigenvalues
{λ} is the spectrum of Â.

The eigenvalue equation (1.4) is often written as Â |λ〉 = λ |λ〉 in quantum mechanics. In this convenient
notation the eigenstate |λ〉 is labeled by the corresponding eigenvalue λ.

One property of eigenstates is that they are only defined up to a constant because |ψ′〉 = α |ψ〉 for α ∈ C
is also an eigenstate of Â if |ψ〉 is an eigenstate of Â as

Â |ψ′〉 = Â(α |ψ〉) = α(Â |ψ〉) = α(λ |ψ〉) = λ(α |ψ〉) = λ |ψ′〉

shows. This means that the eigenstate is a direction in the state space and any state in that direction
independent of its length is an eigenstate of this operator with the same eigenvalue. Thus, one usually
uses normalized eigenstates by choosing α such that 〈ψ|ψ〉 = 1. Because the state space is a complex
vector space eigenstates are only defined up to a global phase. Given 〈ψ|ψ〉 = 1 for an eigenstate |ψ〉 and
|ψ′〉 = eiθ |ψ〉 where eiθ = α is just a complex number and |ψ′〉 is therefore also an eigenstate. It is also
normalized because 〈ψ′|ψ′〉 = 〈ψ|e−iθeiθ|ψ〉 = 1. Thus, there is an extra degree of freedom coming from
this global phase, and whatever quantum mechanics tells about nature is independent of multiplying a
ket by a global phase. This ambiguity is actually true for any state and not only for eigenstates.

Another important property of eigenstate is related to degeneracy of eigenvalues. An eigenvalue is called
non-degenerate if it is the only eigenstate for this eigenvalue (up to a constant), and an eigenvalue is
called degenerate if there are more than one linearly independent eigenstates for this eigenvalue. If the
eigenvalue λ is n-fold degenerate then one writes Â |ψj〉 = λ |ψj〉 for j = 1, 2, ..., n where |ψj〉 are linearly
independent. The state

|ψ〉 =
∑
j

cj |ψj〉 cj ∈ C

is also an eigenstate for the eigenvalue λ as

Â |ψ〉 = Â

∑
j

cj |ψj〉

 =
∑
j

cj Â |ψj〉 =
∑
j

cj λ |ψj〉 = λ

∑
j

cj |ψj〉

 = λ |ψ〉

proves. This shows that any linear combination of eigenstates in an n-fold degenerate subspace is also an
eigenstate with the same eigenvalue.

The remaining question is how to find the eigenstates and eigenvalues of an operator Â. One can take the
identity operator I with I |ψ〉 = |ψ〉 for all |ψ〉 as a simple case to see that any state |ψ〉 is an eigenstate
of I with λ = 1 such that this eigenvalue is infinitely degenerate. One can determine the eigenstates and
eigenvalues in this case by just looking at how the operator acts, and the same is possible for projection
operators and the parity operator.

This is, however, not possible for other operators. A general approach starts from a basis {|uj〉} with the
property to be orthonormal such that 〈uj |uk〉 = δjk. With

|ψ〉 =
∑
j

cj |uj〉 Â =
∑
jk

Ajk |uj〉〈uk|

one gets

λ 〈uj |ψ〉 = 〈uj |Â|ψ〉 = 〈uj |Â I|ψ〉 = 〈uj |Â

(∑
k

|uk〉〈uk|

)
|ψ〉 =

∑
k

〈uj |Â|uk〉 〈uk|ψ〉
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and finally ∑
k

(Ajk − λ δjk) ck = 0 (A− λ I)c = 0 (1.5)

because 〈uj |ψ〉 = cj . This equation is equivalent to the original eigenvalue equation above but represented
in the basis {|uj〉}. Eigenvalues are the same in any representation because (1.4) is independent of the

representation. The task of finding the eigenstates and eigenvalues of the operator Â means finding λ
and ck, and (1.5) shown in two forms is a linear homogeneous system of equations for λ and ck. The task
is called matrix diagonalization. In an N -dimensional state space there are N equations of N unknowns.

Solving the characteristic equation det
(
A− λ I

)
= 0 allows to determine λ. It is an N -order polynomial

equation for λ and has N solutions called roots which can be real or imaginary numbers. They can be
unique solutions called simple roots or repeated solutions called multiple roots.

Solving the equation (A − λ I)c = 0 gives one eigenvector for simple roots but for multiple roots the
situation is more difficult. If a multiple root with multiplicity p has p linearly independent eigenvectors
then one can diagonalize the matrix, but if there are fewer than p linearly independent eigenvectors then
the matrix cannot be diagonalized. Because one is only interested in Hermitian and unitary operators in
quantum physics this problem cannot occur.

As an example the operator Â and state |ψ〉 in matrix form

Â =

(
0 −1

1 0

)
|ψ〉 =

(
c1

c2

)

are used and gives (
0 −1

1 0

)(
c1

c2

)
= λ

(
c1

c2

)

as the eigenvalue equation. The characteristic equation leads to

det

(
−λ −1

1 −λ

)
= 0 ⇒ (−λ)2 − (−1) = 0 ⇒ λ2 = −1 ⇒ λ = ±i

with two solutions λ = +i and λ = −i. The eigenvector for λ = +i is(
0 −1

1 0

)(
c1

c2

)
= i

(
c1

c2

)
⇒

(
−c2
c1

)
= i

(
c1

c2

)
⇒

∣∣∣∣∣ −c2 = ic1

c1 = ic2

∣∣∣∣∣
where both equations are equivalent because i(c1 = ic2) ⇒ ic1 = −c2. A similar calculation for λ = −i
gives the two normalized eigenvectors

λ = +i⇒ |ψ〉 =
1√
2

(
i

1

)
λ = −i⇒ |ψ〉 =

1√
2

(
−i
1

)

for these two eigenvalues. (Note that these eigenvectors can be multiplied by a phase and still represent
the same state.)

1.6 Hermitian Operators

The subset of operators consisting of the Hermitian operators allows to describe physical observables.
A Hermitian operator Â is an operator that is equal to its adjoint such that Â = Â†. Because of the
duality Â |ψ〉 = |ψ′〉 ⇔ 〈ψ| Â† = 〈ψ′| this means for Hermitian operators Â |ψ〉 = |ψ′〉 and 〈ψ| Â = 〈ψ′|.
Hermitian operators have two important properties.

The first property is that the eigenvalues of a Hermitian operator are real numbers. This is important
since the Hermitian operators represent physical observables in quantum mechanics and measurements
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result in real numbers. Starting from the eigenvalue equation (1.4) for a Hermitian operator Â |ψ〉 = λ |ψ〉
one gets 〈ψ|Â|ψ〉 = λ 〈ψ|ψ〉. Starting on the other hand from the dual equation 〈ψ| Â† = λ∗ 〈ψ| which is
〈ψ| Â = λ∗ 〈ψ| for a Hermitian operator one gets 〈ψ|Â|ψ〉 = λ∗ 〈ψ|ψ〉. This leads to λ 〈ψ|ψ〉 = λ∗ 〈ψ|ψ〉
because the left sides of both resulting equations are the same. Positivity means that 〈ψ|ψ〉 ≥ 0 and
〈ψ|ψ〉 = 0 only for |ψ〉 = 0 and it follows λ = λ∗ or, in other words, λ is a real number λ ∈ R.

The second property is that the eigenstates of a Hermitian operator can be chosen to form an orthonormal
basis. One can therefore always write an arbitrary quantum state in the representation given by the
eigenstates of the physical observable. Let |ψ〉 and |ϕ〉 be two eigenstates of the Hermitian operator Â
with Â |ψ〉 = λ |ψ〉 and Â |ϕ〉 = µ |ϕ〉.

First it is assumed that λ 6= µ. From Â |ψ〉 = λ |ψ〉 follows 〈ϕ|Â|ψ〉 = λ 〈ϕ|ψ〉 and from 〈ϕ| Â = µ 〈ϕ|
(because Â = Â† and µ ∈ R) follows 〈ϕ|Â|ψ〉 = µ 〈ϕ|ψ〉. Because the two left sides are equal it follows
that λ 〈ϕ|ψ〉 = µ 〈ϕ|ψ〉 or (λ − µ) 〈ϕ|ψ〉 = 0. Thus, 〈ϕ|ψ〉 = 0 because λ − µ 6= 0, and this means that
two eigenstates with different eigenvalues are orthogonal. More general, this means that all eigenstates
are mutually orthogonal if all eigenvalues are different, and one can normalize them in order to build an
orthonormal basis.

If, however, λ = µ then the eigenvalues are degenerate. For n degenerate eigenvalues the eigenvalue
equation becomes Â |ψj〉 = λ |ψj〉 for j = 1, ..., n. Because any linear combination of these n eigenstates
|ψj〉 is also an eigenstate of λ the set of eigenstates of λ is a subspace of the state space, and because for
an n-fold degenerate eigenvalue there are n linearly independent eigenstates this subspace must therefore
have dimension n.

The eigenstates for different eigenvalues are orthogonal but one only knows that eigenstates belonging
to degenerate eigenvalues can be chosen linearly independent. The Gram-Schmidt orthonormalization
algorithm shows that one can always find an orthonormal basis for the subspace of eigenstates for an
eigenvalue. The initial linearly independent but not necessarily orthogonal set of eigenstates is {|ψj〉} for
j = 1, ..., n, and the goal is to find {|ϕj〉} for j = 1, ..., n with 〈ϕj |ϕk〉 = δjk. The algorithm works as

|ϕ1〉 =
|ψ1〉√
〈ψ1|ψ1〉

|χ2〉 = |ψ2〉+ α |ϕ1〉 = |ψ2〉 − |ϕ1〉 〈ϕ1|ψ2〉 ⇒ |ϕ2〉 =
|χ2〉√
〈χ2|χ2〉

for the first two eigenstates using that from 〈ϕ1|ψ2〉+ α 〈ϕ1|ϕ1〉 = 0 follows α = −〈ϕ1|ψ2〉. The general
idea is to subtract from |ψj〉 a linear combination of |ϕ1〉 , ..., |ϕj−1〉 to make it orthogonal to all the
previously determined |ϕk〉.

Hermitian operators in the matrix formulation of quantum mechanics are Hermitian matrices. Because
the adjoint matrix is the transpose conjugate matrix one gets

Â⇒ Ajk Â† ⇒ A∗kj

for any operator Â. This means Ajk = A∗kj for a Hermitian matrix. The diagonal elements of a Hermitian
matrix are real numbers because j = k means Ajj = A∗jj . Thus, the general Hermitian matrix can be
written as 

A11 A12 A13 . . .

A21 A22 A23 . . .

A31 A32 A33 . . .
...

...
...

 =


A11 ∈ R A12 ∈ C A13 ∈ C . . .

A∗12 ∈ C A22 ∈ R A23 ∈ C . . .

A∗13 ∈ C A∗23 ∈ C A33 ∈ R . . .
...

...
...


and the real elements in the diagonal and and the complex elements above the diagonal completely
determine the matrix.

The Hermitian matrix for Â in the basis of eigenstates with Â |ϕj〉 = λj |ϕj〉 and 〈ϕj |ϕk〉 = δjk is diagonal

because Ajk = 〈ϕj |Â|ϕk〉 = λk 〈ϕj |ϕk〉 = λkδjk. The diagonal matrix elements are the eigenvalues of Â
and the other matrix elements vanish. To summarize, the matrix associated with a Hermitian operator
Â is diagonal when written in the basis spanned by the eigenstates of Â, and the diagonal elements are
the eigenvalues of Â.
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1.7 Compatible Observables

Compatible observables are observables that commute. The significance for physics is that compatible
observables can be measured simultaneously. If two observables such as position and momentum in
quantum mechanics do not commute then they cannot be measured simultaneously.

The fact that two observables Â and B̂ are compatible can be expressed as [Â, B̂] = 0 using (1.1). The
important property of compatible observables is that if [Â, B̂] = 0 then it is possible to find a common
set of eigenstates of Â and B̂ that form a basis in state space. The observable Â can be diagonalized
such that the first g1 eigenvalues in the diagonal are λ1, the next g2 eigenvalues are λ2 and so on. Thus,
eigenvalues can be degenerate. Because the gj states in the basis corresponding to λj can be selected
arbitrarily within the subspace with dimension gj as long as they are orthonormal, they may not be

eigenstates of B̂. The matrix for B̂ is only block-diagonal and this means that there is a block with
g1 × g1 elements not being zero, and the same is true for any other degenerate eigenvalue. However, it is
possible to choose a basis within the subspace of dimension gj belonging to λj such that also the matrix

for B̂ is diagonal. This is now proven in detail.

In a first step it is shown that an eigenvalue of Â is also an eigenvalue of B̂. Given Â |ψ〉 = λ |ψ〉 as the
eigenvalue equation (1.4) and |χ〉 = B̂ |ψ〉 then

Â |χ〉 = ÂB̂ |ψ〉 = B̂Â |ψ〉 = λ
(
B̂ |ψ〉

)
= λ |χ〉

using ÂB̂ = B̂Â shows that λ is also an eigenvalue of B̂. If λ is non-degenerate then |ψ〉 and |χ〉 are
proportional, and the proportionality factor µ with |χ〉 = B̂ |ψ〉 = µ |ψ〉 gives just the eigenvalue equation
for B̂. Thus, if [Â, B̂] = 0 and the eigenvalue spectra of Â and B̂ are non-degenerate then their eigenstates
are the same.

The degenerate case is slightly more complicated. Starting from Â |ψjm〉 for j = 1, ..., gm as the set of
all gm eigenstates associated with the eigenvalue λm where the sum of all the numbers gm gives the
dimension of the state space, all the eigenstates of Â are assumed to be orthonormal (using the Gram-
Schmidt orthonormalization algorithm) such that 〈ψjm|ψkn〉 = δmnδjk. The matrix for the operator Â in
the basis of its eigenstates is diagonal.

With Bjkmn = 〈ψjm|B̂|ψkn〉 the case for m 6= n gives

〈ψm| Â = λmÂ ⇒ 〈ψm|ÂB̂|ψn〉 = λm 〈ψm|B̂|ψn〉
Â |ψn〉 = λn |ψn〉 ⇒ 〈ψm|B̂Â|ψn〉 = λn 〈ψm|B̂|ψn〉

⇒ 〈ψm|B̂|ψn〉 = 0

because 〈ψm|ÂB̂|ψn〉 = 〈ψm|B̂Â|ψn〉 and λm 6= λn follows 〈ψjm|B̂|ψkn〉 = 0. This case is basically the
same as the non-degenerate case.

The case for m = n is different because λm = λn, and the matrix of B̂ in the eigenstates of Â is a
the block-diagonal matrix B. In the gm × gm block B

m
(a submatrix of B) corresponding to λm, the

eigenstates of B̂ are linear combinations of the eigenstates |ψjm〉 for j = 1, ..., gm. Because B is Hermitian

also B
m

is obviously Hermitian, and it therefore can be diagonalized for B̂. Since any linear combination

of eigenstates of Â for the same eigenvalue is an eigenstate of Â the eigenstates of B̂ after diagonalizing
the blocks are still eigenstates of Â. Thus, one can always find a common basis of orthonormal eigenstates
for two Hermitian operators Â and B̂ if the commutator [Â, B̂] vanishes.

The inverse of this statement is easy to prove. If there is a basis of eigenstates common to Â and B̂, then
[Â, B̂] = 0. For any common eigenstate |ψ〉 the two equations

ÂB̂ |ψ〉 = µÂ |ψ〉 = λµ |ψ〉 B̂Â |ψ〉 = λB̂ |ψ〉 = λµ |ψ〉

hold for some eigenvalues λ and µ. Because any state can be written as a linear combination of the
eigenstates forming a basis, (ÂB̂− B̂Â) |ϕ〉 = 0 for all |ϕ〉 in the state space. Actually, the simple reason
for this inverse statement boils down to the fact that the multiplication of numbers is commutative. Two
observables can therefore be measured simultaneously if and only if they commute.
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1.8 Projection Operators

Projection operators project one quantum state onto another. One case where this is useful is when
one measures a property of a quantum particle. Quantum mechanics tells that the state of the particle
collapses onto a different state, and this collapse can be mathematically described by projection operators.

Given a state |ψ〉 that is normalized such that 〈ψ|ψ〉 = 1, the projection operator is defined as the outer
product P̂ψ = |ψ〉〈ψ|. The action of this operator is

P̂ψ |ϕ〉 =
(
|ψ〉〈ψ|

)
|ϕ〉 = |ψ〉 〈ψ|ϕ〉 = c |ψ〉 c = 〈ψ|ϕ〉

on an arbitrary state |ϕ〉. The projection operator associated with the ket |ψ〉 takes a ket |ϕ〉 and returns
another ket proportional to |ψ〉. The proportionality constant c is given by the overlap between the initial
state |ϕ〉 and the state |ψ〉 that defines the projection operator. Thus, the projection operator projects
an arbitrary state onto the reference state |ψ〉.

The first property of projection operators is that they are idempotent as

P̂ 2
ψ =

(
|ψ〉〈ψ|

)(
|ψ〉〈ψ|

)
= |ψ〉 〈ψ|ψ〉 〈ψ| = |ψ〉 1 〈ψ| = |ψ〉〈ψ| = P̂ψ

shows using the fact that |ψ〉 is normalized. This makes sense because projecting the projection on |ψ〉
again on |ψ〉 does not change anything. The second property of projection operators is that they are
Hermitian because

P̂ψ =
(
|ψ〉〈ψ|

)†
= |ψ〉〈ψ| = P̂ψ

due to the fact that the adjoint of an outer product simply reverses the order.

The eigenvalues and eigenstates of the projection operator P̂ψ satisfy

P̂ψ |λ〉 = λ |λ〉 ⇒ |ψ〉 〈ψ|λ〉 = λ |λ〉 c |ψ〉 = λ |λ〉 c = 〈ψ|λ〉

with the two solutions |λ〉 = |ψ〉 and λ = 1 or 〈ψ|λ〉 = 0 and λ = 0. In the first solution is the direction
of the eigenvector parallel to |ψ〉 and in the second solution orthogonal to |ψ〉.

An important property of projection operators is that one can write any state as the sum of a state
parallel to |ψ〉 and a state orthogonal to |ψ〉 because

|ϕ〉 = I |ϕ〉 = I |ϕ〉+ P̂ψ |ϕ〉 − P̂ψ |ϕ〉 = P̂ψ |ϕ〉+ (I− P̂ψ) |ϕ〉

splits |ϕ〉 into two eigenstates of P̂ψ. The first part P̂ψ |ϕ〉 is an eigenstate with eigenvalue λ = 1 because

P̂ψ[P̂ψ |ϕ〉] = P̂ 2
ψ |ϕ〉 = P̂ψ |ϕ〉 and the second part (I − P̂ψ) |ϕ〉 is an eigenstate with eigenvalue λ = 0

because P̂ψ[(I− P̂ψ) |ϕ〉] = (P̂ψ − P̂ 2
ψ) |ϕ〉 = (P̂ψ − P̂ψ) |ϕ〉 = 0. Thus, any state |ϕ〉 can be written as

|ϕ〉 = P̂ψ |ϕ〉+
(
I− P̂ψ

)
|ϕ〉 (1.6)

where P̂ψ |ϕ〉 is parallel to |ψ〉 and (I− P̂ψ) |ϕ〉 is orthogonal to |ψ〉.

Given are two vector spaces U1 and U2 where both are subspace of another vector space V . If one can
always write any vector |v〉 ∈ V as a sum of a vector |u1〉 ∈ U1 and a vector |u2〉 ∈ U2 then U1 and
U2 span V written as V = U1 + U2. If this decomposition is unique such that U1 ∩ U2 = {0} then is
V given by the so-called direct sum V = U1 ⊕ U2 and U1 and U2 are called complementary subspaces.
Because any |ψ〉 ∈ V can be decomposed according to (1.6) into P̂ψ |ϕ〉 ∈ V1 and (I− P̂ψ) |ϕ〉 ∈ V0 every
projection operator splits the vector space V into two complementary subspaces such that V = V1 ⊕ V0.

The n vectors |u1〉 , ..., |un〉 build a subspace of a vector space with the orthonormal basis {|uj〉}, and the
operator defined as

P̂n =

n∑
j=1

|uj〉〈uj | (1.7)
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is a projection operator because

P̂ 2
n =

 n∑
j=1

|uj〉〈uj |

( n∑
k=1

|uk〉〈uk|

)
=

n∑
j=1

n∑
k=1

|uj〉 〈uj |uk〉 〈uk| =
n∑
j=1

n∑
k=1

|uj〉 δjk 〈uk| =
n∑
j=1

|uj〉〈uj | = P̂n

is satisfied. Therefore, the projection of an arbitrary vector |ϕ〉 is

P̂n =

n∑
j=1

|uj〉 〈uj |ϕ〉

and is a vector in the subspace spanned by the basis vectors |u1〉 , ..., |un〉.

1.9 Measurement in Quantum Mechanics

The measurement process in quantum mechanics is very different from the one in classical physics due
to the probabilistic nature of quantum mechanics. It is therefore impossible to predict the outcome of
a quantum mechanical measurement. A physical quantity A corresponds to an observable Â with the
eigenvalue equation Â |uj〉 = λj |uj〉. According to postulate III the result of a measurement of a physical
quantity is one of the eigenvalues of the associated observable. This postulate only tells that one gets one
of the eigenvalues of Â if one measures Â in state |ψ〉, but it does not tell which eigenvalue one will get.

Postulate IV: The measurement of A in a system in normalized state |ψ〉 gives eigenvalue λj with

probability P (λj) = |〈uj |ψ〉|2.

This means that with N copies of |ψ〉 one gets the result λj of a measurement pj times, and

lim
N→∞

pj
N
→ P (λj)

relates pj to P (λj) for large numbers N . For N = 1 only the probabilities for the different λj are known,
but for very large N on the other hand the rates for the different λj are known.

With ψ =
∑
j cj |uj〉 and cj = 〈uj |ψ〉 the probability can be written as P (λj) = |cj |2. This means that

one expands |ψ〉 in the basis of eigenstates of Â in order to measure property Â in state |ψ〉, and the
expansion coefficients cj tell the relative contribution of λj . A very special case is when |ψ〉 is one of the

eigenstates |uj〉, and the result of a measurement is certain because of cj = 1 and P (λj) = |cj |2 = 1.

The implicit assumptions of postulate IV

1. 〈ψ|ψ〉 = 1
2. λj is non-degenerate
3. λj is discrete

can be relaxed.

From P (λj) = |cj |2,
∑
j P (λj) = 1 and

〈ψ|ψ〉 =

∑
j

c∗j 〈uj |

(∑
k

ck |uk〉

)
=
∑
jk

c∗jck 〈uj |uk〉 =
∑
j

|cj |2

follows the generalized statement

〈ψ|ψ〉 = C ⇒ P (λj) =
1

C
|〈uj |ψ〉|2 =

|〈uj |ψ〉|2

〈ψ|ψ〉
(1.8)

in case |ψ〉 is not normalized. Thus, the probability Pψ(λj) can be determined even if the length of |ψ〉
is r 6= 1, and the probability is also independent of a global phase as discussed above. If Pψ(λj) is the
probability given by (1.8) then the probability of |ψ′〉 = r eiθ |ψ〉 is

Pψ′(λj) =
|〈uj |ψ′〉|2

〈ψ′|ψ′〉
=

∣∣〈uj |r eiθ|ψ〉∣∣2
〈ψ|r e−iθ r eiθ|ψ〉

=
r2 |〈uj |ψ〉|2

r2 〈ψ|ψ〉
=
|〈uj |ψ〉|2

〈ψ|ψ〉
= Pψ(λj)

as expected.
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The eigenvalue equation in the case of degenerate eigenvalues is

Â |ujm〉 = λm |ujm〉 j = 1, ..., gm

and the gm eigenstates for the eigenvalue λm form a subspace of dimension gm where it is assumed that
{|ujm〉} is an orthonormal basis. An arbitrary state |ψ〉 can be written as

|ψ〉 =
∑
m

gm∑
j=1

cjm |ujm〉 cjm = 〈ujm|ψ〉

such that the probability becomes

P (λm) =

gm∑
j=1

∣∣〈ujm|ψ〉∣∣2 =

gm∑
j=1

∣∣cjm∣∣2
for the eigenvalue λm. Using the projection operator on a subspace defined as (1.7) and replacing |ψ〉 by

|ψm〉 = P̂m |ψ〉 =

gm∑
j=1

|ujm〉 〈ujm|ψ〉 =

gm∑
j=1

cjm |ujm〉

gives

〈ψm|ψm〉 =

 gm∑
j=1

(cjm)∗ 〈ujm|

( gm∑
k=1

ckm |ukm〉

)
=

gm∑
j,k=1

(cjm)∗ckmδjk =

gm∑
j=1

∣∣cjm∣∣2 = P (λm)

such that this probability can be written as P (λm) = 〈ψm|ψm〉 = 〈ψ|P̂ †mP̂m|ψ〉 = 〈ψ|P̂ 2
m|ψ〉 = 〈ψ|P̂m|ψ〉

using the fact that the projection operator is Hermitian and idempotent. It follows that one can write
the probability of a measurement outcome as the expectation value of the projection operator onto the
subspace spanned by the eigenstates associated with the measured eigenvalue.

In the case of a continuous eigenvalue spectrum the eigenvalue equation is

Â |vα〉 = α |vα〉

where the eigenvalue α is a continuous variable. An arbitrary state |ψ〉 can be expanded

|ψ〉 =

∫
dα c(α) |vα〉 c(α) = 〈vα|ψ〉

as shown above. Probabilities become probability densities, and the probability of a measurement out-
come in the range (α, α+ dα) is

dP (α) = |〈vα|ψ〉|2dα = |c(α)|2dα

where |〈vα|ψ〉|2 = |c(α)|2 is the probability density. A rather famous example of a continuous variable is
position which leads to the position representation

|ψ〉 =

∫
dxψ(x) |x〉 ψ(x) = 〈x|ψ〉

in one dimension where ψ(x) is the wave function. The probability density of a particle at x is |ψ(x)|2.

1.10 State Collapse

Before a measurement it is impossible to predict what the result will be. Only the likelihood of a result
is known. The question is what happens after a measurement. The act of measuring a quantum particle
changes its state, and the state after the measurement is an eigenstate corresponding to the measured
eigenvalue.
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Postulate V: If the measurement of A in a system in state |ψ〉 gives eigenvalue λm, the state of the
system immediately after the measurement is the eigenvalue |um〉 associated with the eigenvalue λm that
has been measured.

Thus, because of a measurement with outcome λm the state collapses from |ψ〉 to |um〉. This is the case
for non-degenerate, discrete eigenvalues. In the case of degenerate eigenvalues one can use the projection
operator P (λm) = 〈ψm|ψm〉 = 〈ψ|P̂m|ψ〉, and the state is

P̂m |ψ〉√
〈ψ|P̂m|ψ〉

after the measurement of eigenvalue λm. This means that the state immediately after the measurement
of λm is the normalized projection of |ψ〉 onto the subspace spanned by the eigenvectors associated with
eigenvalue λm. In the notations used above P̂m |ψ〉 = |ψm〉 and 〈ψ|P̂m|ψ〉 = 〈ψm|ψm〉 this equation shows
that the state immediately after the measurement is just |ψm〉 normalized.

In the case of a continuous eigenvalue spectrum the probability is

P (α1 < α < α2) =

∫ α2

α1

dα |〈vα|ψ〉|2 =

∫ α2

α1

dα |c(α)|2

for α in the interval ∆ = (α1, α2). Using the projection operator

P̂∆ =

∫ α2

α1

dα |vα〉〈vα|

the state |ψ〉 becomes

P̂∆ |ψ〉√
〈ψ|P̂∆|ψ〉

immediately after a measurement of a value α ∈ ∆. For the position operator this is called the collapse
of the wave function.

1.11 Expectation Value and Mean Square Deviation

Information captured by a quantum state can be represented by a probability distribution. However, it
is important to realize that expectation values and the outcomes of measurements are two completely
different concepts in quantum mechanics. If one marks the eigenvalues λ on the x-axis and P (λ) on the
y-axis one gets a probability distribution. In the following a discrete spectrum is assumed but continuous
spectra can be handled very similarly.

In the special case that |ψ〉 is one of the eigenstates |um〉 the coefficients are cm = 1 and cj = 0 for
j 6= m, and the probability for measuring λm is P (λm) = 1. Thus, one measures λm with hundred
percent certainty. Here the probability distribution is everywhere zero except for a peak one at λm. Since
probability distributions can become very complicated there are quantities that allow to simplify (and
reduce) the information encoded in a probability distribution.

The first quantity is the expectation value. If there are very many copies of the system then quantum
mechanics tells the exact fractions of measurements that give a particular outcome. In this context the
expectation value is the average value of all these measurement outcomes. The expectation value of the
observable Â is

〈Â〉ψ =
∑
j

λjP (λj) =
∑
j

λj |〈uj |ψ〉|2

given that the system is in state |ψ〉. If the state is clear from the context the expectation value is usually
simply written as 〈Â〉 without specifying the state |ψ〉. However, the expectation value is always related
to a state.
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The expectation value can be determined differently using

〈ψ|Â|ψ〉 = 〈ψ|IÂI|ψ〉 = 〈ψ|

∑
j

|uj〉〈uj |

 Â

(∑
k

|uk〉〈uk|

)
|ψ〉 =

∑
jk

〈ψ |uj〉〈uj | Â |uk〉〈uk|ψ〉

=
∑
jk

λk 〈ψ|uj〉 〈uj |uk〉 〈uk|ψ〉 =
∑
jk

λk 〈ψ|uj〉 δjk 〈uk|ψ〉 =
∑
j

λj 〈ψ|uj〉 〈uj |ψ〉

=
∑
j

λj |〈uj |ψ〉|2 = 〈Â〉ψ

because Â |uk〉 = λk |uk〉. This leads to the definition of the expectation value

〈Â〉ψ = 〈ψ|Â|ψ〉 (1.9)

in its well-known form. One usually works with normalized states |ψ〉 but the expectation value can be
written as

〈Â〉ψ =
〈ψ|Â|ψ〉
〈ψ|ψ〉

in case |ψ〉 is not normalized.

In the special case |ψ〉 = |uj〉 where |ψ〉 is an eigenstate the expectation value is

〈Â〉uj
= 〈uj |Â|uj〉 = λj 〈uj |uj〉 = λj

and is therefore – not very surprisingly – simply the eigenvalue associated with |uj〉. In this case the
expectation value does coincide with the possible outcome of a measurement, but this is not always
the case. If Â has the two eigenvalues +1 and −1 with the corresponding eigenstates |u+〉 and |u−〉,
respectively, then the superposition |ψ〉 = 1√

2
(|u+〉+ |u−〉) has the expectation value

〈Â〉ψ =
∑
j

λjP (λj) = (+1)P (+1) + (−1)P (−1) =
1

2
− 1

2
= 0

and this is not a possible outcome of a measurement.

The expectation value is a useful quantity but gives only a rough idea about the probability distribution.
Any two probability distributions symmetric about the same center lead to the same expectation value,
and the expectation value alone does not allow to tell these two probability distributions apart although
they can obviously be very different. A quantity describing the width of a probability distribution would
therefore help in this situation.

The mean square deviation is based on the operator σ̂A = Â−〈Â〉 and is defined as the expectation value
〈σ̂2
A〉 = 〈(Â− 〈Â〉)2〉. It can be written as

〈σ̂2
A〉 = 〈Â2〉 − 〈Â〉

2
(1.10)

because

〈σ̂2
A〉 = 〈(Â− 〈Â〉)2〉 = 〈Â2 − 2Â 〈Â〉+ 〈Â〉

2
〉 = 〈Â2〉 − 2 〈Â〉

2
+ 〈Â〉

2

using the fact that the expectation value of a real number is this number such that 〈〈Â〉〉 = 〈Â〉. The
quantity typically used to measure the width of a probability distribution is the square root of the mean
square deviation. This ensures that the width has the same units as the quantity itself. Thus, the root
mean square deviation is defined as

∆Â =
√
〈σ̂2
A〉 =

√
〈Â2〉 − 〈Â〉

2
(1.11)

for measuring the width of a probability distribution.

The definition of σ̂A = Â − 〈Â〉 shows that σ̂A is looking at how far one is from the average 〈Â〉, and
〈σ̂A〉 = 0 because there are as many terms on one side as on the other. This is the reason why one has to
look at the value of the square because the terms on either side cannot cancel. Because the expectation
value of Â is λj when |ψ〉 is an eigenstate |uj〉 the root mean square deviation ∆Â = 0 and this is not a
surprise for the width of the corresponding probability distribution.
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1.12 The Heisenberg Uncertainty Principle

Any quantum state |ψ〉 can be represented either as |ψ〉 =
∑
j cj |uj〉 in the basis of eigenstates {|uj〉}

of one observable Â with the eigenvalue equation Â |uj〉 = λj |uj〉 or as |ψ〉 =
∑
k dk |vk〉 in the basis of

eigenstates {|vk〉} of another observable B̂ with eigenvalue equation B̂ |vk〉 = µk |vk〉. The Heisenberg
uncertainty principle is the mathematical relation between the coefficients cj and the coefficients dk one
can use to represent the same quantum state |ψ〉.

Formally, the Heisenberg uncertainty principle states that

∆Â∆B̂ ≥ 1

2

∣∣∣〈[Â, B̂]〉
∣∣∣ (1.12)

using the root mean square deviation(1.11), the expectation value (1.9) and the commutator (1.1). This
principle is usually introduced for the two operators position and momentum as ∆x̂∆p̂ ≥ 1

2~ but it is

generally applicable to any two observables Â and B̂.

If the two operators Â and B̂ do not commute then the right side of (1.12) is strictly bigger than zero, and
if one draws the probability distribution of |ψ〉 in the basis of the eigenstates of Â and in the basis of the
eigenstates of B̂ then the two graphs are not completely independent. Their width is related such that
the narrower the one is the wider must be the other. If the probability distribution for |ψ′〉 is wider than
the one for |ψ〉 when both are represented in the basis of eigenstates of Â then the probability distribution
for |ψ〉 must be wider than the one for |ψ′〉 when both are represented in the basis of eigenstates of B̂.

The case where Â and B̂ commute is not so interesting. The Heisenberg uncertainty principle still holds
but it only states that ∆Â∆B̂ ≥ 0. There are states with ∆Â and ∆B̂ arbitrarily small. This makes
sense because two commuting observables can be diagonalized simultaneously such that there are states
that are eigenstates for both of them. Since the root mean square deviation vanishes for eigenstates, ∆Â
and ∆B̂ are both zero.

One can turn around the argument. If two observables do not commute then they cannot be diagonalized
simultaneously due to the Heisenberg uncertainty principle because otherwise ∆Â = 0 and ∆B̂ = 0 would
be possible. They can therefore not be measured simultaneously.

The fact that the Heisenberg uncertainty principle is called an uncertainty principle is the source of many
misrepresentations and misinterpretations. If |ψ〉 ≈ |uj〉 and therefore cj ≈ 1 when represented in the

eigenstate basis of Â because the probability distribution is very narrow and concentrated around λj then

P (λj) = |cj |2 ≈ 1 and the outcome of a measurement of observable Â would almost certainly be λj . Thus
in this situation one can predict the outcome of a quantum measurement with high confidence before it has
been performed. If |ψ〉 is represented in the basis of eigenstates of observable B̂ with [Â, B̂] 6= 0 then the
probability distribution must be very wide such that all dk and therefore also all P (µk) are comparable.
This means that Â has a definite value and there is very little uncertainty before the measurement is
performed while, by contrast, B̂ can have any value and there is a high degree of uncertainty for the
outcome of a measurement before the measurement has been performed. This situation gave the principle
its name.

The term “uncertainty” does not mean that one does not know something about the given system because
one has not been able to characterize it fully due to some limitations of the measurement apparatus. One
knows everything one can know about a quantum system, and it is all described by the state |ψ〉. The
Heisenberg uncertainty principle relates different ways of representing the same state.

The well-known version of this principle relates the position operator x̂ and the momentum operator p̂
with the commutation relation [x̂, p̂] = i ~ gives

∆x̂∆p̂ ≥ 1

2
|〈i ~〉| = 1

2
~

when applying (1.12). Position and momentum are continuous variables and a state |ψ〉 is

|ψ〉 =

∫
dxψ(x) |x〉 |ψ〉 =

∫
dp ψ̄(p) |p〉
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on the left side in the position basis and on the right side in the momentum basis where ψ(x) = 〈x|ψ〉
and ψ̄(p) = 〈p|ψ〉 are position and momentum wave functions, respectively. The Heisenberg uncertainty

principle says that if the graph of |ψ(x)|2 is very narrow then the graph of
∣∣ψ̄(p)

∣∣2 must be very broad
and vice versa. The two probability distributions are related by a Fourier transform, and the Fourier
transform already encodes the Heisenberg uncertainty principle.

The Heisenberg uncertainty principle can be proven mathematically. It is based on several theorems and
lemmata from different areas of mathematics.

The first one is the Schwarz inequality in the form for states in a state space. Given |χ〉 = |ψ〉+ α |ϕ〉 it
follows from 〈χ|χ〉 ≥ 0 that

〈χ|χ〉 = (〈ψ|+ α∗ 〈ϕ|) (|ψ〉+ α |ϕ〉) = 〈ψ|ψ〉+ α 〈ψ|ϕ〉+ α∗ 〈ϕ|ψ〉+ |α|2 〈ϕ|ϕ〉 ≥ 0

is true for any α. Inserting a special value for α gives

α = −〈ϕ|ψ〉
〈ϕ|ϕ〉

∈ C 〈ψ|ψ〉 − 〈ϕ|ψ〉
〈ϕ|ϕ〉

〈ψ|ϕ〉+

(
−〈ϕ|ψ〉
〈ϕ|ϕ〉

)∗
〈ϕ|ψ〉+

∣∣∣∣ 〈ϕ|ψ〉〈ϕ|ϕ〉

∣∣∣∣2 〈ϕ|ϕ〉 ≥ 0

〈ψ|ψ〉 − |〈ψ|ϕ〉|
2

〈ϕ|ϕ〉
− |〈ψ|ϕ〉|

2

〈ϕ|ϕ〉
+
|〈ψ|ϕ〉|2

〈ϕ|ϕ〉
≥ 0

using 〈ϕ|ψ〉∗ = 〈ψ|ϕ〉 and |〈ψ|ϕ〉|2 = 〈ϕ|ψ〉 〈ψ|ϕ〉. The result is

〈ψ|ψ〉 〈ϕ|ϕ〉 ≥ |〈ψ|ϕ〉|2 (1.13)

since two terms cancel.

The second property to be shown is that σ̂A = Â − 〈Â〉 for a Hermitian operator Â is also Hermitian.
This follows from

σ̂†A =
(
Â− 〈Â〉

)†
= Â† − 〈Â〉

†
= Â− 〈Â〉 = σ̂A

using just the fact that Â is Hermitian.

Defining |ψA〉 = σ̂A |ψ〉 and |ψB〉 = σ̂B |ψ〉 leads to

〈ψA|ψA〉 〈ψB |ψB〉 ≥ |〈ψA|ψB〉|2

using (1.13). The two terms in the Schwarz inequality can be written as

〈ψA|ψA〉 = 〈ψ|σ̂†Aσ̂A|ψ〉 = 〈ψ|σ̂2
A|ψ〉 = 〈σ̂2

A〉 〈ψB |ψB〉 = 〈ψ|σ̂†Bσ̂B |ψ〉 = 〈ψ|σ̂2
B |ψ〉 = 〈σ̂2

B〉

and are therefore the expectation values of σ̂2
A and σ̂2

B , respectively. Similarly, 〈ψA|ψB〉 = 〈σ̂Aσ̂B〉 can
be shown. This gives

〈σ̂2
A〉 〈σ̂2

B〉 ≥ |〈σ̂Aσ̂B〉|
2

inserted into the Schwarz inequality.

A third property needed relates commutator and anticommutator and is

1

2
[X̂, Ŷ ] +

1

2
{X̂, Ŷ } =

1

2

(
X̂Ŷ − Ŷ X̂

)
+

1

2

(
X̂Ŷ + Ŷ X̂

)
= X̂Ŷ

for any two operators X̂ and Ŷ . Applied to σ̂A and σ̂B leads to

σ̂Aσ̂B =
1

2
[σ̂A, σ̂B ] +

1

2
{σ̂A, σ̂B}

and using

[σ̂A, σ̂B ] = σ̂Aσ̂B − σ̂Bσ̂A =
(
Â− 〈Â〉

)(
B̂ − 〈B̂〉

)
−
(
B̂ − 〈B̂〉

)(
Â− 〈Â〉

)
= ÂB̂ − Â 〈B̂〉 − 〈Â〉 B̂ + 〈Â〉 〈B̂〉 − B̂Â+ B̂ 〈Â〉+ 〈B̂〉 Â− 〈B̂〉 〈Â〉 = ÂB̂ − B̂Â = [Â, B̂]
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gives

σ̂Aσ̂B =
1

2
[Â, B̂] +

1

2
{σ̂A, σ̂B}

in this case.

The result so far is

〈σ̂2
A〉 〈σ̂2

B〉 ≥ |〈σ̂Aσ̂B〉|
2

=

∣∣∣∣12 〈[Â, B̂]〉+
1

2
〈{σ̂A, σ̂B}〉

∣∣∣∣2
with a commutator and an anticommutator to be determined. Because of

[Â, B̂]† =
(
ÂB̂ − B̂Â

)†
= B̂†Â† − Â†B̂† = B̂Â− ÂB̂ = −[Â, B̂]

the commutator of two Hermitian operators is anti-Hermitian, and the expectation value of an anti-
Hermitian operator X̂† = −X̂ is

〈X̂〉
∗

= 〈ψ|X̂|ψ〉
∗

= 〈ψ|X̂†|ψ〉 = −〈ψ|X̂|ψ〉 = −〈X̂〉

and therefore 〈[Â, B̂]〉 is purely imaginary. Because of

{σ̂A, σ̂B}† = (σ̂Aσ̂B + σ̂Bσ̂A)
†

= σ̂Bσ̂A + σ̂Aσ̂B = {σ̂A, σ̂B}

the anticommutator of two Hermitian operators is Hermitian, and the expectation value of a Hermitian
opertor Ŷ † = Ŷ is

〈Ŷ 〉
∗

= 〈ψ|Ŷ |ψ〉
∗

= 〈ψ|Ŷ †|ψ〉 = 〈ψ|Ŷ |ψ〉 = 〈Ŷ 〉

and therefore 〈{σ̂A, σ̂B}〉 is purely real. Thus,

〈σ̂2
A〉 〈σ̂2

B〉 ≥
∣∣∣∣12 〈[Â, B̂]〉

∣∣∣∣2 +

∣∣∣∣12 〈{σ̂A, σ̂B}〉
∣∣∣∣2

because |x+ i y|2 = |x|2 + |y|2. Since both terms on the right side of this inequality are positive, one can
drop one of them, and the result with its square root becomes

〈σ̂2
A〉 〈σ̂2

B〉 ≥
∣∣∣∣12 〈[Â, B̂]〉

∣∣∣∣2 √
〈σ̂2
A〉
√
〈σ̂2
B〉 ≥

1

2

∣∣∣〈[Â, B̂]〉
∣∣∣

concluding the proof for (1.12).

1.13 The Schrödinger Equation

The Schrödinger equation is a key equation in quantum physics because it describes the time evolution
of quantum states. It therefore corresponds to Newton’s second law in classical mechanics.

Postulate VI: The time evolution of a state |ψ(t)〉 is given by the Schrödinger equation

i ~
d

dt
|ψ(t)〉 = Ĥ(t) |ψ(t)〉 (1.14)

where the Hamilton operator Ĥ(t) is the observable associated with the total energy of the system.

The Schrödinger equation (1.14) is a postulate and is not something that can be derived. However, all
the predictions coming out of this equation are confirmed by experiment. The Planck constant h appears
as ~ = h

2π called the reduced Planck constant. The Schrödinger equation states that the time evolution
of a quantum system is governed by the total energy of the system.

Time evolution is described in form of a first order differential equation in time t. Thus, given a general
solution and initial conditions |ψ(t)〉 will exactly tell the state of the system at any time t. This means
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that the time evolution is deterministic, and there is no ambiguity or probability involved. Probability
plays only a role when one performs a measurement.

Combining the Schrödinger equation with measurements provides a more complete picture of time evo-
lution. If the state of the system at time t0 is |ψ(t0)〉 then state at a later time t1 is |ψ(t1)〉 completely
determined by the Schrödinger equation as long as no measurement has been performed in the time in-
terval between t0 and t1. If a measurement of the observable Â is performed at time t1 its outcome is one
of the eigenvalues λj of Â with probability P (λj) = |〈uj |ψ(t1)〉|2 where |uj〉 is the eigenstate associated
with λj . After the measurement of λk the state changes from |ψ(t1)〉 to the eigenstate |uk(t1)〉. Thus, as
long as the system is not measured it evolves deterministically according to the Schrödinger equation, but
during the measurement it changes probabilistically and instantaneously to the eigenstate corresponding
to the measured eigenvalue. After the measurement the state evolves again deterministically according
to the Schrödinger equation until another measurement is performed.

One question in this context is what the Hamiltonian of the system is. It consists of the kinetic energy

p̂2

2m

in the non-relativistic setting and the potential energy

1

4πε0

e2

|r̂1 − r̂2|

as an example of the Coulomb force between two electrons. The kinetic energy is always the same but
the potential energy depends on the system.

The next question is how one solves the Schrödinger equation. For the conservative systems where the
Hamiltonian is time independent such that Ĥ(t) = Ĥ there is a general solution. (The solution for time
dependent Hamiltonians Ĥ(t) is more complicated.) A good representation for solving this equation is
obviously the energy representation in terms of eigenvalues and eigenstates of Ĥ. The eigenvalue equation
for the energy operator is

Ĥ |uj〉 = Ej |uj〉 (1.15)

in the basis of the energy eigenstates. The Hamiltonian is Hermitian because it is an observable, and any
state |ψ(t)〉 can be written as

|ψ(t)〉 =
∑
j

cj(t) |uj〉 cj(t) = 〈uj |ψ(t)〉

in terms of these time independent eigenstates. The dependence on time is captured in the coefficients
cj(t). The Schrödinger equation becomes

〈uj |i ~
d

dt
|ψ(t)〉 = 〈uj |Ĥ|ψ(t)〉 i ~

d

dt
〈uj |ψ(t)〉 = Ej 〈uj |ψ(t)〉 i ~

d

dt
cj(t) = Ej cj(t)

in this basis and is therefore a first-order differential equation for the coefficients cj(t). Integrating gives∫ t1

t0

dcj(t)

cj(t)
= − i

~
Ej

∫ t1

t0

dt
[
ln
(
cj(t)

)]t1
t0

= − i Ej
~

[t]
t1
t0

ln

(
cj(t1)

cj(t0)

)
= − i Ej

~
(t1 − t0)

and the solution becomes

cj(t) = cj(t0) e−i Ej(t−t0)/~ |ψ(t)〉 =
∑
j

cj(t0) e−i Ej(t−t0)/~ |uj〉 (1.16)

for the time dependent coefficients. The solution of the Schrödinger equation for a conservative system
is therefore always the same where the coefficients cj(t) evolve independently in time.

The case where the initial state is an eigenstate of the Hamiltonian is called a stationary state. Given
Ĥ |uj〉 = Ej |uj〉 and |ψ(t0)〉 = |uk〉 one can see in

|ψ(t0)〉 = |uk〉 |ψ(t)〉 = e−i Ek(t−t0)/~ |uk〉
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that |ψ(t0)〉 and |ψ(t)〉 only differ by a global phase factor. The two states represent the same physical
situation. Therefore, a system that is in an eigenstate of the Hamiltonian does not change with time,
and this is the reason these states are called stationary.

Conservation of the norm 〈ψ(t)|ψ(t)〉

d

dt
〈ψ(t)|ψ(t)〉 =

(
d

dt
〈ψ(t)|

)
|ψ(t)〉+ 〈ψ(t)|

(
d

dt
|ψ(t)〉

)
= − 1

i ~
〈ψ(t)|Ĥ(t)|ψ(t)〉+

1

i ~
〈ψ(t)|Ĥ(t)|ψ(t)〉 = 0

follows from using the Schrödinger equation (1.14)

d

dt
|ψ(t)〉 =

1

i ~
Ĥ(t) |ψ(t)〉 d

dt
〈ψ(t)| = − 1

i ~
〈ψ(t)| Ĥ(t)

for kets and bras. Thus, one has to normalize a state only once and does not have to worry later about
normalization for the state during time evolution.

To summarize, the recipe for conservative systems with a time independent Hamiltonian is:

1. Solve the eigenvalue equation for the Hamiltonian Ĥ |uj〉 = Ej |uj〉 to determine the energy eigen-
values Ej and eigenstates |uj〉.

2. Write the initial state of the system as |ψ(t0)〉 =
∑
j cj(t0) |uj〉 in the basis of the energy eigenstates.

3. Finally, the state |ψ(t)〉 at a later time t is given by the equation (1.16).

The case for time dependent Hamiltonian is more difficult.

20


