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Abstract

Despite its limits, the so-called Standard Model describes large parts of Particle Physics in very
exact accordance with experiments and is very well tested. Alex Flournoy from the Colorado School
of Mines held 29 lectures in 2018 covering this topic. His lectures were available on YouTube at
the time this transcript has been assembled and may still be available today as “Particle Physics
(2018)” in 29 separate videos. The first 16 lectures cover the theoretical side of the topic with the
formal structure of the Standard Model, symmetries, gauge fields and the Higgs mechanism, and
the remaining 13 lectures touch on the practical side with the computational aspects of decays and
scattering amplitudes. A thorough basis of modern physics including Special Relativity and Quantum
Mechanics is required, but knowledge of Quantum Field Theory is not a prerequisite.

1 Introduction

1.1 The Framework for Particle Physics

The topic covered here is the Standard Model of Particle Physics, and that is physics at its deepest level
where physicists are completely confident. String theory, for example, is a level deeper, but there is less
confidence, and there is very much confidence in chemistry, but it is not as deep. The Standard Model
of Particle Physics is incredibly well tested and is extremely accurate except for some puzzles still to be
addressed.

The following high-level language is applicable to everything in physics and categorizes what is done in
various areas of physics:

• A framework is used for describing the evolution of a system.
• In a theory a chosen framework is applied to a context.
• A model is an effective theory that requires some inputs that are not predicted by theory itself.

Classical Lagrangian dynamics is an example of a framework and string theory is a theory, but it turns
out that one is mostly concerned with models in physics. The Standard Model, as the name suggests,
is a model. It is not a pure theory but an effective theory with inputs coming from many experimental
measurements such as the four dimensions of spacetime and the measured electron mass. String theory is
different. It has no experimental inputs but deduces everything from mathematical consistency including
the dimensionality of spacetime. Working with frameworks alone is not very useful because one wants to
study something such as a real physical system, but frameworks are needed as a basis. Two important
frameworks in the history of physics are Newtonian mechanics and the framework of Special Relativity.

The framework of Newtonian physics has the following characteristics:

• It is usable for low speeds.
• It is based on spacetime modeled as a three-dimensional space and an absolute time.
• The underlying principle of relativity is the Galilean principle of relativity.
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In contrast, the relativistic framework based on Special Relativity has the following characteristics:

• It is usable for any speed.
• It is based on the three- plus one-dimensional spacetime.
• The underlying principle of relativity is the one of Special Relativity.

Special relativity1 has the two important properties that it is basically the same as the Galilean principle
of relativity for speeds which are small compared to the speed of light, and that the speed of light is the
same in all frames.

Because speeds in Particle Physics with today’s accelerators are in the order of 99.9999% of the speed of
light, the Newtonian framework is not appropriate. Even with smaller speeds it would not be wise to base
a newly developed theory or model on a limited framework. Thus, Special Relativity is the framework for
Particle Physics. The transition from Newtonian mechanics to relativistic mechanics is pretty smooth.
However, this is different for the transition from Newtonian mechanics to Quantum Mechanics.

The framework of Newtonian physics has the following characteristics:

• It is valid for large decoherent systems.
• It is deterministic given the initial conditions and the dynamics.
• Starting from a Hamiltonian or Lagrangian a variational argument gives the equations of motion.
• The position of a particle is a function of time.

In contrast, non-relativistic Quantum Mechanics has the following characteristics:

• It is valid for all slow systems.
• It is probabilistic given the initial conditions and the dynamics.
• The Hamiltonian operator gives the time evolution of a wave function.
• The wave function describes the probabilities for the position of a particle at a point in time.

The transition from Newtonian mechanics to Quantum Mechanics is much more difficult than the transi-
tion from Newtonian mechanics to Special Relativity. In Quantum Mechanics, the action S is the integral
of the Lagrangian L with respect to time t. If the value S is much larger than ~, one can use Newtonian
mechanics, but also here it makes more sense to use Quantum Mechanics for Particle Physics instead of
Newtonian mechanics because it is more general.

Because one treats very small and very fast objects in Particle Physics, one might guess that relativistic
Quantum Mechanics would be the framework for Particle Physics. However, this is wrong. The wave
function Ψ is normalized in non-relativistic Quantum Mechanics such that

∫
|Ψ|2d4x = 1 where d4x

specifies integration over all four dimensions of spacetime. This just means that the probability to find
the particle somewhere in the universe is one. This normalization is in conflict with Special Relativity
because in Special Relativity the number of particles in the universe can change. Note, however, that
combining a proton and an electron into a hydrogen atom is not what is meant here because this does
not change the number of particles. A beta-decay where a neutron decays into a proton, an electron and
an antineutrino on the other hand really changes the number of particles.

Figure 1.1: Contributions to a moving particle

If one wants to study the probability for a particle starting at the left point in figure 1.1 (a) and ending
at the right point, this probability is largely governed by (b) in this figure, but one has to include the
possibility (c) that the particle breaks up into two particles which separate, come together, annihilate and
create again the initial particle, as well as all the more complicated possibilities such as (d). In Quantum
Mechanics one has to allow all possible trajectories from the left point to the right point. This is similar
to the double-slit experiment where one has to add all possible paths of the electron. However, here it is
not clear how important all these contributions are, and one would like to have a framework where these

1As a side remark it can be noted that General Relativity is not a generalization of Special Relativity, and it is also not
a framework. Its context is gravitation, and it generalizes Newton’s theory of gravity.

2



quantitative issues are included and handled correctly. The right framework turned out to be Quantum
Field Theory which is actually not a theory, but is a very radical sort of revisioning of the starting point
and how to work with things.

1.2 A Short Introduction to Quantum Field Theory

A particle can be thought of as moving along a path in spacetime which is also called a world line, and
this path in spacetime can be described by some function x(t) as visualized in figure 1.2 (a). The position
of the particle in space is parametrized by time. A field is a different picture because it has a field axis
in addition to the spacetime axes. One can think of the field as a surface parametrized by space and
time as shown in (b) of this figure. The field is therefore a function Φ(x, t). Particles and fields are very
different, but if one considers only small localized fluctuations of the field Φ, and the field is essentially
flat everywhere at a value zero with exception of a few blips here and there, these blips are the particles.
In (c) of the figure, two such fluctuations representing particles are indicated.

Figure 1.2: Comparison between particle and field

A lake full of water is a good field descriptor. It certainly does not look like a particle, but the little
ripples on the surface are more like particles than the whole lake. One has to be careful with this analogy
because the lake is made out of water molecules, and these molecules are not the particles meant here.
The fields of Quantum Field Theory are not made of anything. In other areas of physics such as density
functional theory, mean field theory or the theory of fluids, fields are nice approximate descriptions, but
they are always made out of something while the fields in Quantum Field Theory are fundamental.

Quantum field theory has a few nice properties. One is that it gives a natural origin of identical particles.
Two electrons in Quantum Mechanics are identical and indistinguishable, and one can see the reason in
Quantum Field Theory because two electrons are just two ripples in one field. There is not a field for
one electron and another field for the second electron, but there is just one field for all electrons in the
universe. Similarly there is one field for every particle such as the muon and tauon, the three flavors of
neutrinos, and the six flavors of the quarks.

Quantum field theory also gives weights to diagrams such that it naturally tells how the factor in figure 1.1
(b) compares to the factor of (c), (d) and so on. The coefficients in front of the various terms just pop
out of Quantum Field Theory.

A further nice property of Quantum Field Theory is the spin–statistics theorem. A boson is by definition
a particle based on Bose statistics which means that it is symmetric under the exchange of two particles.
A fermion by definition is based on Fermi-Diract statistics which means that if one interchanges two of
them the wave function has to be antisymmetric. The Pauli exclusion principle follows from the Fermi-
Dirac statistics. However, the statistics does not have anything to do with spin, but it turns out that
every boson has integer spin, and every fermion has half-integer spin. This is a very non-trivial connection
whose origin comes from Quantum Field Theory.

Last but not least Quantum Field Theory allows for non-perturbative phenomena.
The fluctuations such as the two blips in figure 1.2 (c) are tiny and are also called
perturbations, but one can easily imagine fields that have larger structures where
the whole field is a kind of waterfall, for example, and one can look for small
fluctuations in this waterfall structure. The Higgs mechanism in the Standard
Model is an example of such a non-perturbative phenomenon.
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1.3 Brief Overview of the Standard Model

One can break up all the fundamental fields of the Standard Model into three categories. The fields are
often called particles, but with Quantum Field Theory as the framework for particles physics, the field is
the correct paradigm.

The first category contains the force particles also called mediators or gauge bosons. It can also be split
into the three categories with the photon represented by γ for electromagnetism, the W± and the Z
boson for the weak interaction, and the eight gluons for the strong interaction. Electrodynamics and the
weak interaction build together the electroweak interaction, and the theory for the strong interaction is
called Quantum Chromondynamics.

The second category contains the fields building matter which are all fermions, and it can also be split into
two groups called families. The first family consists of the three generations leptons with the electron-
neutrino and the electron, the muon-neutrino and the muon, and the tau-neutrino and the tauon. The
second family consists of the three generations quarks with the up and down, the charm and strange,
and the top and bottom quark. The electron and its neutrino or the up and down quark, for example,
are called different flavors. For each of these field or particle there is an antiparticle. Quarks in addition
have one of the three colors red, blue, green.

The third and last category contains only the Higgs field or Higgs boson and plays a different role than
the other fields. The Higgs field is responsible for the masses of the other fields.

The three categories can also be characterized by spin. The Higgs boson in the third category has spin
zero, the matter fields in the second category have spin one half, and the gauge bosons in the first
category have spin one. The main question of Particle Physics is how these fields interact with each
other. Although the details of the Standard Model are quite nasty, the Standard Model itself is very
elegant. It is completely based on symmetry principles. The obviously missing interaction, however, is
gravity, and a complete theory or model for Particle Physics must certainly include it.

2 Symmetries and Related Concepts

2.1 Symmetries

The concept of symmetry is an incredibly powerful tool to help simplify calculations, but symmetry also
plays a more fundamental role in determining the type of dynamics in certain physical theories. For
example, Special Relativity is nothing more than a statement about the symmetries of spacetime, and
the forces in the Standard Model can be seen to arise as the consequence of certain symmetries. Simply
stated, a symmetry is an invariance under some transformation or, in other words, one does something
to something, and it does not seem to change.

A symmetry can be static such as many objects or shapes in geometry. An equilateral
triangle, for example, looks unchanged when rotated by 120◦ about its center. Static
symmetries are easy to visualize, but dynamical symmetries such as the transformation
of a Lagrangian L → L′ = L will turn out to be important in Particle Physics.
Dynamical symmetries arise when looking at the evolution of a system in time.

No matter what type of symmetry is considered, the spirit is the same. A transformation is enacted
on something, and afterwards that something looks the same. Naively it may seem that the something
must only be built out of things that themselves are invariant. If this were the case it would be terribly
restrictive, but fortunately one can build an invariant something out of pieces which are not invariant so
long as one combines them in an appropriate way. One can build, for example, a rotationally invariant
scalar from vector components with a dot product. The components of the vector change when the
coordinate system is rotated, but the length of the vector, which is the dot product of the vector with
itself, is invariant.

Thus, symmetries are always based on transformations and invariance under these transformations. In
the following the preliminary focus will be on describing transformations in general, but later it is made
sure that they are symmetries of a Lagrangian.
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2.2 Types of Transformations

Transformations come in different types such as global or local, and to clarify these types static examples
will be used as illustrations.

A transformation can either be global or local. A global transformation is applied to all element of a
system uniformly, while a local transformation may be applied to each element differently. In figure 2.1
the transformation in (a) is a translation in space, and the transformation in (b) is rotation in space. If
the same translation in space is globally used for all nine dots in (a), the result resembles the original
configuration of the nine dots, while the result looks different when each dot it translated differently. The
example in (b), however, shows that the result of local and global transformations can look the same
because one cannot distinguish whether the four circles were rotated all about the same or each about a
different angle. If a system is symmetric under local transformation then it is automatically symmetric
under global transformation because one can choose the same transformation for each element of the
system instead of different transformations, but the reverse is not true as the examples in figure 2.1 show.

Figure 2.1: Difference between local and global transformations

A transformation can either be discrete or continuous, a discrete transformation can be either finite or
infinite, and a continuous transformation can either be compact or non-compact. All four possibilities
are illustrated in figure 2.2 with examples leading to a symmetric result. The rotation of the triangle
in (a) is discrete and finite because the angle θ can only change in discrete steps and there are only the
finite possibilities θ ∈ {0◦, 120◦, 240◦} creating a symmetry. The global translation of the infinite lattice
of equidistant dots in (b) is discrete and infinite because the distance d for the translation Td must be
an integer multiple of the distance between two neighboring dots. The rotation of the circle in (c) is
continuous and compact because θ can take any value in [0, 2π) and the circle stays for any value of θ in
a bound area. The translation of the straight line in (d) is also continuous but non-compact because d
in Td can take any value in (−∞,+∞) but it is not bound in the directions to the left and to the right.

Figure 2.2: Difference between discrete and continuous transformations

Continuous transformations cannot be finite and the distinction between finite and infinite does not
make sense. However, the distinction between compact and non-compact plays a similar role as the
distinction between finite and infinite for discrete transformations. The distinction between compact
and non-compact determines whether something is quantized or not in Quantum Mechanics. Angular
momentum is always quantized as it is similar to situation (c) in figure 2.2 while linear momentum is
only quantized if the particle is put into a box and it is not quantized in a situation such as (d).

As a last distinction, transformations can be internal or in spacetime which is also called external. The
coordinates in spacetime generally change with a spacetime transformation if there is a coordinate system
specified for spacetime, while internal transformations do nothing to the coordinates. Special relativity
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is associated with spacetime symmetries, but the strong, weak and electromagnetic forces are associated
with internal symmetries called gauge symmetries.

Internal transformations in a sense also change coordinates because it turns out that it is very useful
to increase the notion of space to include isospace and similar spaces which can also be coordinatized.
Thus, one can talk about rotations in these internal spaces. These transformations do not touch on what
happens in spacetime and vice versa transformations in spacetime normally do not impact these internal
spaces.

2.3 Groups and Representations

For the purpose of Particle Physics, transformations can be treated mathematically using the concepts
of groups and representations. A group is a collection of elements {A,B, ...} with a composition • that
satisfies:

1. Closure: If A,B ∈ G then A •B ∈ G
2. Identity: There is some I ∈ G such that I •A = A for any A ∈ G
3. Inverse: For any A ∈ G there is an A−1 ∈ G such that A−1 •A = I
4. Associativity: A • (B • C) = (A •B) • C

The axioms identity and inverse will be very important in building invariants. A group with commuta-
tivity A • B = B • A in addition to the above axioms is called abelian, but groups needed in Particle
Physics do normally not commute and are therefore non-abelian.

A subset of elements of a group that satisfies all axioms of a group is a subgroup of the original group.
Subgroups always have to include the identity and the inverses for all elements and must also be closed
under the composition.

More important than the groups themselves are in physics the representations of the groups. One can
abstractly specify a group. The group elements are the transformations, and the composition is the
application of two transformations one after the other. The group of two-dimensional rotations, for
example, can be defined by the angle for the rotation and the composition as the addition of two angles.
In three dimension, rotation becomes much trickier because a rotation, for example, about the x-axis
followed by a rotation about the y-axis can be represented by a single rotation about some axis, and one
can calculate this axis but it is not as trivial as in the two-dimensional case.

Instead of looking at the group elements, one can look at the objects the group elements act on. The
two-dimensional rotations may act, for example, on triangles. These are the representations of the group.
A single group has usually many different representations. Some are more useful since they fully illustrate
the content of the group. They are called faithful representations. A group does not only allow different
representations, but representations can be used to define the group.

Figure 2.3: Three representations for the group of rotations about 90◦

In figure 2.3 three representations of the group of rotations about 90◦ are shown as an example where the
identity is I = R0◦ and the composition is the addition of angles. The representations are squares with
letters assigned to the four corners. Representation r1 in (a) is the only faithful representation because all
four group elements R0◦ , R90◦ , R180◦ , and R270◦ are distinguishable through the letters A, B, C, and D
assigned to the four corners. The result of the group elements R0◦ and R180◦ as well as those of R90◦ and
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R270◦ look the same in (b), and r2 is a degenerate representation. The result of all four group elements
in (c) are indistinguishable such that r3 is a highly degenerate representation. It is called the identity
representation. The four possible squares with distinguishably labeled corners are listed in (d).

It is important to have the option of the identity representation because there are things which do not
get touched by certain transformations. Leptons, for example, are not effected by a SU(3) gauge rotation
of the strong interaction. Thus, leptons have to be in the identity representation of the SU(3) group.

The simplest group is the one containing only the identity. The
simplest non-trivial group has two elements {I, g} with the
property g 6= I and g2 = I where g2 stands for g • g. This
group is called Z2 and is abstractly defined. One representa-
tion of it contains the two rotations R0 by 0◦ and Rπ by 180◦.
A second representation consists of E for even numbers and O
for odd numbers with the addition as the composition. A third representation has the two elements +1
and −1 with the multiplication as the composition. All three are abelian because their multiplication
tables are symmetric with respect to the diagonal from top left to bottom right. For abelian groups the
order of the elements in the compositions does not matter, but for non-abelian groups it does. As a
convention for multiplication tables the row is the first element and the column the second.

The representations in figure 2.3 use geometrical objects, but one can often work with more convenient
linear representations where the transformations act linearly using matrices. In the example of the group
of rotations by multiples of 90◦ the definitions

S1 =


1
0
0
0

 S2 =


0
1
0
0

 S3 =


0
0
1
0

 S4 =


0
0
0
1



R0◦ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 R90◦ =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 R180◦ =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 R270◦ =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


can be used where a column vector is assigned to each square in (d) and a matrix as an element of the
group is assigned to each rotation. These matrices behave as expected under matrix multiplication such
that R90◦R180◦ = R270◦ and so on.

This is a four-dimensional representation, but there are representations of this group with other di-
mensionalities. This group is an abelian group because rotations in two dimensions can be defined as
addition of angles and the addition of numbers is commutative. These matrices have real components,
but in Particle Physics also matrices with complex components will be used. Many groups have a matrix
representation. This automatically guarantees associativity because matrix multiplication is associative.

2.4 Dual Representations

An important concept is invariance. The scalar product of two vectors, for example, is invariant under
rotation. The way to describe how elements of a representation transform under an element of a group
G has been defined above. To get invariant scalars, one can try to combine two objects which transform
oppositely. The opposite transformation for A must be A−1, and the need for a transposition can be
understood when looking at the scalar product a · b of two vectors a and b as the matrix multiplication

aT b = (a1, a2, a3) ·

b1b2
b3


of a row vector aT with components a1, a2, a3 and a column vector b with components b1, b2, b3.

For any matrix representation r one can form the dual representation r̃ such that r̃ → (A−1)T if r → Ar
for A ∈ G. The value r̃T r is invariant because r̃T r → ((A−1)T r̃)TAr = r̃T ((A−1)T )T = r̃TA−1Ar = r̃T r.
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If r is an element of a complex matrix representation, the dual representation is also complex, and the
invariant is r̃†r = (r̃∗)T r. Because Lagrangians must be real, only real invariants are of interest.

In the example of the rotations by multiples of 90◦ with

R =




1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1


 R̃ =




1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1




where the representation with elements r has the basis R and the dual representation with elements r̃
has the basis R̃, the four possible rotations leave r̃T r invariant. With A = R90◦ and A−1 = R270◦

r̃T r = (e, f, g, h)


a
b
c
d

 = ea+ fb+ gc+ hd→ ((A−1)T r̃)TAr =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


T 

e
f
g
h



T 

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0



a
b
c
d

 =



f
g
h
e



T 

b
c
d
a

 = fb+ gc+ hd+ ea = r̃T r

shows the invariance. Note that in this example A−1 = AT .

2.5 Metric

For a group G and a linear matrix representation r one can find an object g called metric such that r̃ = gr.
In other words, one starts with a group and a representation for this group with elements r and finds all
elements r̃ of the dual representation by applying g systematically to all elements r. The object g can
be and will always be represented by a symmetric square matrix, and it satisfies therefore the equation
r̃T r = (gr)T r = rT gT r = rT gr. The condition for rT gr to be invariant under the transformation r → Ar
is

AT gA = g (2.1)

because rT gr = (Ar)T gAr = rTAT gAr must be satisfied.

If the metric g is not known, but the group G such as the group all rotations in three dimensions, for
example, is given, one can find the metric g such that the condition (2.1) is satisfied for any A in the
group. Thus, one can use the transformations A to figure out what the metric g has to be.

More common is the case where the metric is known. If there is some representation r of a group G,
then forming a dual representation r̃ with the known metric g will give an invariant r̃T r if AT gA = g for
A ∈ G as stated in (2.1). This also means that given a representation r and a metric g, one can use the
condition (2.1) to find the transformations A which leave r̃T r invariant. This is the typical approach in
physics to encounter symmetries. One starts with a configuration of particles, fields, dynamical quantities
and so on all of which form some representation and finds a set of transformations that are symmetries
of r̃T r using the metric g.

As an example, vectors v in three dimensions and the metric g are used given by

v =

v1

v2

v3

 g =

1 0 0
0 1 0
0 0 1

 ṽ = gv =

1 0 0
0 1 0
0 0 1

v1

v2

v3

 =

v1

v2

v3


where the metric is simply the identity I. The example is so trivial that the dual vectors look identical
to original vectors. (However, this is not normally the case.) Thus, ṽv = vT gv is invariant under any
transformation A that satisfies (2.1) and consequently also satisfies ATA = I. This is the orthogonality
condition, and the group is called O(3) for three-dimensional orthogonal group. Rotations R in three
dimensions form a compact, continuous, non-abelian group, satisfy RTR = I and belong to O(3).
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Writing Rx(θ) for a rotation about the x-axis by an angle θ, one can consider the two matrices

Rx(θ) =

1 0 0
0 cos(θ) sin(θ)
0 − sin(θ) cos(θ)

 R′x(θ) =

−1 0 0
0 − cos(θ) sin(θ)
0 − sin(θ) − cos(θ)


both satisfying RTR = I. However, only Rx(θ) is a rotation, but R′x(θ) is not. One difference between

the two matrices is that detRx(θ) = +1 and detR′x(θ) = −1.

To get only the rotations one can build the so-called special three-dimensional orthogonal group SO(3)
which is a subgroup of O(3). It consists of the elements R of O(3) with detR = +1. The proof that SO(3)
is a subgroup of O(3) is easy. It is closed under the matrix multiplication because det(AB) = detA·detB,
the identity exists because det I = +1, the inverse satisfies det

(
R−1

)
= +1 because from RTR = I follows

R−1 = RT and from detRT ·detR = +1 and det(R) = +1 follows that detRT must be positive too, and,
finally, associativity is guaranteed because matrix multiplication is associative.

The remaining question is what has been taken away from O(3) to end up with SO(3). The two matrices

P =

−1 0 0
0 −1 0
0 0 −1

 = −I I =

1 0 0
0 1 0
0 0 1

 = P 2

also build a subgroup of O(3), a discrete subgroup. It is again the simplest non-trivial group Z2 introduced
above. The element P is not a rotation, but reflects x, y, z simultaneously, and it is called a parity
transformation on all three coordinates. The group O(3) can be decomposed into the two subgroups
SO(3) and Z2 such that O(3) = SO(3) × Z2. In other words, all elements of O(3) either belong to
SO(3) or can be built by multiplying an element of SO(3) with P . (Note that −I in two dimensions
is the rotation about 180◦ and not a parity transformation, but reflecting only one axis gives a parity
transformation. In general, reflecting an odd number of axes gives a parity transformation and reflecting
an even number of axes gives a rotation in any dimension.)

Another example is based on complex two-dimensional vectors and the metric g = I. Given two column
vectors u and v with the complex components u1, u2 and v1, v2, respectively, the scalar ũ†v is invariant
under the transformations by 2 × 2 complex matrices A provided A†A = (AT )∗A = I. This condition
is the unitarity condition and defines the unitary group U(2). Restricting transformations in U(2) to
continuous transformations means, similarly to the case of O(3) and SO(3), detA = +1. The subgroup
of U(2) with detA = +1 is the special unitary group SU(2).

As a 3×3 matrix, an element of SO(3) has nine components, but one cannot choose them independently.
The number of free parameters (or generators as will be discussed later) of the group can be determined
by expanding

R =

a b c
d e f
g h i

 RTR = I =

a b c
d e f
g h i

a d g
b e h
c f i

 =

1 0 0
0 1 0
0 0 1


and counting the independent equations. Within the nine equations from RTR = I

(1) : a2 + b2 + c2 = 1 (2) : ad+ be+ cf = 0 (3) : ag + bh+ ci = 0

(4) : da+ eb+ fc = 0 (5) : d2 + e2 + f2 = 1 (6) : dg + eh+ fi = 0

(7) : ga+ hb+ ic = 0 (8) : gd+ he+ if = 0 (9) : g2 + h2 + i2 = 1

those with numbers (2) and (4), (3) and (7), as well as (6) and (8), respectively, are the same and therefore
dependent. The nine coefficients with the six remaining independent equations or conditions leave three
free parameters.

The question remains whether the condition detA = +1 is an additional constraint reducing the number
of free parameters by one. The answer is no because det

(
RTR

)
= detRT ·detR = (detR)2 = det I = +1

following from RTR = I has two discrete solutions detR = ±1 but it is not possible to reach the case
detR = −1 by continuously changing the three parameters.
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The group SO(N) of rotations in dimension N has 1
2N(N − 1) free parameters. In the case of N = 2,

this means that SO(2) has one free parameter, and in the case of N = 3, the number of free parameters
of SO(3) is 3 as shown above. Rotations in three dimensions can be seen either as rotations about the
three axes x, y, z, or, more correct, as the rotations in the planes x-y, x-z, y-z. In four dimensions SO(4)
has 6 free parameters corresponding to the rotations in the planes w-x, w-y, w-z, x-y, x-z, y-z.

This is not the situation in Special Relativity because Special Relativity has the metric written in one of
the two forms

g =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 g =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (2.2)

where the left version is more common in General Relativity and the right version is mainly used in Particle
Physics. The metric is no longer the identity because the time component has a different sign. The value
of rT gr is invariant under the transformation Λ for a four-vector r according to (2.1) if ΛT gΛ = g. The
group of transformations Λ with ΛT gΛ = g and det Λ = +1 is the Lorentz group also called SO(1,3).

The determination of the number of free parameters for SU(N) is shown for the example N = 2. The
complex 2× 2 matrix U satisfies

U =

(
a b
c d

)
U†U = I =

(
a b
c d

)(
a∗ c∗

b∗ d∗

)
=

(
1 0
0 1

)
and therefore the equations

(1) : aa∗ + bb∗ = 1 (2) : ac∗ + bd∗ = 0 (3) : ca∗ + db∗ = 0 (4) : cc∗ + dd∗ = 1

where (1) and (4) are one equation each because every term is real, and (2) and (3) lead to the same two
real equations. The four complex or eight real equations reduce to four real independent equations, but
the four free parameters are reduced by one because of det

(
U†U

)
= det I. In this case (detU∗) detU = +1

has not two discrete solutions as in the case of SO(3) but has the continuous set detU = eiθ of complex
solutions. Thus, detU = +1 creates another non-trivial equation to be satisfied, and the number of
independent free parameters reduces to 3.

In general, SU(N) has N2 − 1 free parameters, and U(N) has N2 free parameters. As will be discussed
in the following, U(1) corresponds to the electromagnetic force with 1 gauge boson (photon), SU(2)
corresponds to the weak interaction with 3 gauge bosons (W±, Z0), and SU(3) corresponds to the strong
interaction with 8 gauge bosons (gluons). The correspondence of the electromagnetic and the weak force
is not as simple as it seems here, but this will also become clear in the following.

To summarize, the number of continuous parameters for the orthogonal and unitary groups are

SO(N) : 1
2N(N − 1) SO(N-n,n) : 1

2N(N − 1) U(N) : N2 SU(N) : N2 − 1 (2.3)

as shown above. For the Standard Model, the groups SO(1,3) for Special Relativity, as well as U(1) with
one, SU(2) with three, and SU(3) with eight gauge bosons are of primary interest. The Lagrangian for
the Standard Model will be invariant under all four groups. That means that every single ingredient of
the Lagrangian has to be in some, but not necessarily the same representation of each of these groups.
For example, a quark is a spinor of SO(1,3), a vector of SU(3), a vector of SU(2), a vector of U(1), and
the W+ is a vector of SO(1,3), a singlet of SU(3), an adjoint of SU(2), and a vector of U(1).

Being a vector means that the particle is charged, and being a singlet means that the particle is not
touched by the group and therefore gets transformed by the identity transformation of the group. These
terms and the terms spinor and adjoint will be introduced detailed later. Vectors of U(1), SU(2) and
SU(3) are not vectors in spacetime but in some abstract vector space.

The three groups U(1), SU(2) and SU(3) corresponding to three internal gauge symmetries give rise to
the forces and are going to play therefore a very different role than SO(1,3). The spacetime symmetries
are handled by the SO(1,3) group, and the Lagrangian has to be invariant under the transformations of
this group.
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3 Special Relativity

3.1 The Spacetime Group and Lorentz Transformations

Special relativity is the calculational framework for Particle Physics. One does not worry about curvature
and gravitational effects from General Relativity. The spacetime group is SO(1,3) with one of the metrics
in (2.2). In the following the left metric will be used. A transformation Λ ∈ SO(1,3) satisfies ΛT gΛ = g
and det Λ = +1. The six free parameters can be thought of as rotations in a general sense where the
three rotations Rxy, Rxz, Ryz in the planes x-y, x-z, y-z, respectively, are the real rotations in the three-
dimensional space, and the remaining three rotations Bxt, Byt, Bzt in the planes t-x, t-y, t-z, respectively,
are the boosts with some velocity in the direction of x, y, z. But instead of calling these transformations
Rxy or Bxt, they are called Λxy or Λxt.

The relevant definitions for the infinitesimal coordinate displacement d~s, a rotation in the y-z plane and
a boost in the direction x are

d~s =


cdt
dx
dy
dz

 Λyz(θ) =


1 0 0 0
0 1 0 0
0 0 cos θ sin θ
0 0 − sin θ cos θ

 Λxt(β) =


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

 (3.1)

where θ is the rotation angle, and β = v
c together with γ = 1√

1−β2
defines the boost.

According to the definition of the metric, the scalar d~sT g d~s = −c2dt2 +dx2 +dy2 +dz2 is invariant under
the transformation d~s→ Λd~s if ΛT gΛ = g. One can easily check this for Λyz(θ) using sin2 x+ cos2 x = 1
and less easily for Λxt(β) using − sinh2 x + cosh2 x = 1 because the rotation in the y-z plane leaves
dy2 + dz2 invariant and the boost along x leaves −c2dt2 + dx2 invariant.

The relation to sinh and cosh is not that obvious. To get a physical picture one can
consider the spatial origin in a frame S where dx = dy = dz = 0 and cdt 6= 0. The
transformation to the frame S′ gives

cdt
0
0
0

→


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1



cdt
0
0
0

 =


γcdt
−βγcdt

0
0

 =


cdt′

dx′

dy′

dz′


and dx′ in the frame S′ can be written as dx′ = −βγcdt = −βcdt′ = −vdt′ or dx′

dt′ = −v. This is the
velocity of the origin of the frame S seen in the frame S′. Thus, an observer in the frame S′ which is
moving along the x-axis with the speed v sees the origin of the frame S moving along the negative x-axis
with the speed v.

3.2 Tensors

With vectors r and dual vectors r̃T the scalar r̃T r is invariant where r̃ = gr. If vµ is a vector and vµ a
dual vector then these quantities are

vµ =


v0

v1

v2

v3

 vµ = (v0, v1, v2, v3) = (gµνv
ν)T =



−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



v0

v1

v2

v3



T

= (−v0, v1, v2, v3)

in the usual notation where v0 = ct, v1 = x, v2 = y, v3 = z, and with the Einstein summation convention
which says that any two repeated indices are summed. The value

vµv
µ = v0v

0 + v1v
1 + v2v

2 + v3v
3 = (−v0, v1, v2, v3)


v0

v1

v2

v3

 = −(v0)2 + (v1)2 + (v2)2 + (v3)2

11



is invariant because r transforms as r → Λr and r̃ transforms as r̃ → (Λ−1)T r̃. Written using indices the
transformation is for vectors vµ → vµ

′
= Λµ

′

µ v
µ = Λvµ and for dual vectors vµ → vµ′ = vµΛµµ′ = vµΛ−1

such that Λµµ′ = (Λµ
′

µ )−1 because vµ′ = (r̃T )′ = (r̃′)T = ((Λ−1)T r̃)T = r̃TΛ−1 = vµΛ−1. An example of a

vector is the infinitesimal displacement d~s = dxµ in (3.1) with dxµdx
µ = −c2dt2 +dx2 +dy2 +dz2 = ds2.

Objects like vµ, vµ or Λµν can be expressed as matrices but many quantities in physics cannot. The more
general mathematical objects needed are so-called tensors. One can think of a vector as an object that
transforms as vµ → vµ

′
= Λµ

′

µ v
µ and a dual vector as an object that transforms as vµ → vµ′ = Λµµ′vµ.

(In matrix notation the order must be vµΛµµ′ as used above, but in tensor notation with the Einstein
summation convention the order is not relevant.)

One can define tensors with arbitrary rank (p, q):

(0,0) scalar T → T ′ = T T → T ′ = T

(1,0) vector Tµ → Tµ
′

= Λµ
′

νT
ν T → T ′ = ΛT

(0,1) dual vector Tµ → Tµ′ = Λνµ′Tν T → T ′ = T Λ−1

(1,1) (1,1) tensor Tµν → Tµ
′

ν′ = Λµ
′

κΛλν′T
κ
λ T → T ′ = ΛT Λ−1

(2,0) (2,0) tensor Tµν → Tµ
′ν′ = Λµ

′

κΛν
′

λT
κλ T → T ′ = ΛT ΛT

(0,2) (0,2) tensor Tµν → Tµ′ν′ = Λκµ′Λ
λ
ν′Tκλ T → T ′ = (Λ−1)T T Λ−1

...

This table shows the rank, the name, the transformation in index notation, and the transformation in
matrix notation. The index notation is more useful than relying on matrix manipulation because the
order does not matter, one can express higher rank tensors, equations become simpler, and transformation
properties are more transparent. Note, however, that ΛκµΛλν , for example, and similar for higher ranks
does not represent two separate transformations but is one single transformation.

The rank (p, q) indicates the number p of upper and the number q of lower indices where the distinction
between upper and lower indices is the distinction between a representation and a dual representation
of a group. In Special Relativity, the group is SO(1,3), and the representation r leads to upper indices
and the dual representation r̃ to lower indices. Tensors can be combined with index contraction as in
Gν = vµT

µν or without as in H λν
µ = vµT

λν . Some tensors can be represented by matrices, but many
cannot. The indices essentially tell how a tensor transforms. Each upper index transforms like a vector,
and each lower index transforms like a dual vector.

In Special Relativity, three categories of quantities may appear in index notation with upper and lower
indices:

1. Tensors: The kinematic and dynamical quantities will almost always be represented by some tensor.
They represent the degrees of freedom. Velocity and the electromagnetic field strength, for example,
are written as tensors.

2. Metric: The metric tensor gµν takes an element of the representation r to an element of the dual
representation r̃ and therefore turns a vector into a dual vector. The metric has the special property
gµν = (gµν)−1. The inverse metric gµν does the opposite and turns a dual vector into a vector.
The metric is a true tensor and transforms accordingly, and it is also a dynamical field in General
Relativity, but is constant in Special Relativity. However, ΛT gΛ = g and therefore g = (Λ−1)T gΛ−1

or g = g′. In Special Relativity, the metric is often called ηµν , and it satisfies ηµν = ηµν .
3. Transformations: The transformations operate on tensors, can always be represented by a matrix,

and always carry one index from the old coordinates and one from the new. Transformations are
different from tensors, and one never transforms transformations.

The difference between matrix notation and index notation can be
demonstrated with the example of the two-dimensional rotations. The
two matrices(

cos θ − sin θ
sin θ cos θ

) (
cos θ sin θ
− sin θ cos θ

)
both define a rotation about the angle θ. The left rotation is called
active and transforms a vector ~v into a vector ~v′ by rotating it about the angle θ. The right rotation is
called passive and changes the coordinate system with coordinates x and y into the coordinate system x′

12



and y′ by rotating it about the angle θ. Usually in physics the coordinate transformation is meant when
talking about a rotation. The rotation in matrix notation

dxµ =

(
dx
dy

)
→

(
cos θ sin θ
− sin θ cos θ

)(
dx
dy

)
=

(
cos θ dx+ sin θ dy
− sin θ dx+ cos θ dy

)
=

(
dx′

dy′

)
needs the matrix on the left side and the vector dxµ on the right side. The rotation in index notation,
however, with its components

Λµ
′

µ =

(
cos θ sin θ
− sin θ cos θ

)
Λ1′

1 = cos θ Λ1′

2 = sin θ Λ2′

1 = − sin θ Λ2′

2 = cos θ

applied to dxµ → dxµ
′

= Λµ
′

µ dx
µ = Λµ

′

1 dx
1 + Λµ

′

2 dx
2 corresponding to dx′ = cos θ dx + sin θ dy and

dy′ = − sin θ dx+ cos θ dy is independent of the order such that dxµ Λµ
′

µ gives the same result.

Humans usually prefer matrix multiplication, and multiplication with tensors of rank 2 can be turned
into matrix multiplication by making sure that repeated indices are directly next to each other. Thus,
MµνT

λµ needs to be changed into TλµMµν by simply switching the order, and MµνT
µλ needs to be

changed by transposing one of the two matrices. If the Lorentz transformation Λµ
′

µ is represented by the

matrix Λ, then Λµµ′ is represented by Λ−1, Λ µ′

µ by ΛT , and Λ µ
µ′ by (Λ−1)T .

3.3 Derivatives

In the three-dimensional space, the quantity ds2 = dxidx
i = dx2 + dy2 + dz2 is only zero if all the

components dxi are zero. In the four-dimensional spacetime this is different because of the negative time
component. The quantity ds2 = dXµdX

µ = −c2dt2 + dx2 + dy2 + dz2 can be positive, zero or negative.
It is a scalar, and it has the same value in all reference frames. It is therefore invariant under Lorentz
transformations.

An infinitesimal displacement dXµ in x-direction has the three possibilities

ds2 = −c2dt2 + dx2 > 0 → dx

dt
> c spacelike

ds2 = −c2dt2 + dx2 = 0 → dx

dt
= c lightlike

ds2 = −c2dt2 + dx2 < 0 → dx

dt
< c timelike

where the first case shows a speed greater than the speed of light, the second case a
speed equal to the speed of light, and the third case a speed less than the speed of light.
Particles with a mass always belong to the third group and particles without mass to
the second group.

The main tools for derivation in non-relativistic physics are either ~∇ resulting in the gradient ~∇Φ when
applied to a scalar field and in the divergence ~∇ · ~E when applied to a vector field or d

dt which operates
on both types of fields. Both of these derivatives need relativistic generalizations.

The generalization of ~∇ is the 4-derivative ∂µ = ∂
∂Xµ = ( ∂

c∂t ,
∂
∂x ,

∂
∂y ,

∂
∂z ) that acts on fields where Xµ is

the position in spacetime. As the index suggests, this is a dual vector ∂µ → ∂µ′ = Λµµ′ ∂µ. Similar to
the case in three dimensions, the 4-gradient ∂µ Φ is a dual vector, and the 4-divergence ∂µA

µ is a scalar.
This kind of derivative plays an important role when working with fields.

Experiments, however, are usually working in terms of particles as fluctuations of fields.
In non-relativistic physics the position of a particle is written as ~r(t), its velocity as
~v = d~r

dt and so on. Using d~s from equation (3.1), the result of d~s
dt does not transform as

a tensor of any kind and is therefore not a valid generalization of d
dt and not a useful

definition of 4-velocity. To remedy this situation something that parametrizes the path
of a particle and replaces time but is invariant is needed. An obvious solution is the
“length” of the path. The invariant displacement dτ =

√
−ds2 is used instead of dt.
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The scalar τ =
∫ √
−ds2 =

∫ √
c2dt2 − dx2 − dy2 − dz2 is called proper time, is a monotonically increas-

ing parameter for the path of a massive particle in spacetime and parametrizes the particle’s evolution
as time does in non-relativistic physics. It is also called “rest” time because dτ = cdt in the rest frame
of the particle where dx = dy = dz = 0. The parameter τ for the length of the path cannot be used for
massless particles because they move with the speed of light, and in this case τ = 0.

3.4 Velocity, Momentum and Energy

The 4-vector velocity defined as Uµ = cdX
µ

dτ is a true tensor that transforms as Uµ → Uµ
′

= Λµ
′

µ U
µ.

(Note that the factor c gets the units right since dXµ

dτ is dimensionless.) One can calculate how the velocity
Uµ of a particle with rest frame Srest looks like when seen from a frame S. Velocity is in components

U0 = c2
dt

dτ
U1 = c

dx

dτ
= c

dx

dt

dt

dτ
U2 = c

dy

dτ
= c

dy

dt

dt

dτ
U3 = c

dz

dτ
= c

dz

dt

dt

dτ
= γc = γvx = γvy = γvz

(3.2)

because from dτ2 = c2dt2−dx2−dy2−dz2 follows dτ2

dt2 = c2− v2, dt2

dτ2 = 1
c2−v2 and dt

dτ = γ
c . The 4-vector

velocity can therefore be written as

Uµ =

(
γc
γ~v

)
γ =

1√
1− v2

c2

by combining the three spatial components into a three-dimensional vector ~v. (Note that all four com-
ponents depend on all three components of the spatial velocity ~v because of γ.)

The 4-vector momentum, which is perhaps the most important quantity for studying collisions including
decays, is defined as Pµ = mUµ with the invariant mass m which is sometimes also called rest mass. One
can write the momentum as

Pµ =

(
mγc
mγ~v

)
=

( 1
cE
~P

)
Pµrest =

(
mc
0

)
(3.3)

in general and in the rest frame, respectively. For v
c � 1 one gets γ ≈ 1 + 1

2
v2

c2 . Applied to (3.3) gives
mγc ≈ 1

c (mc2 + 1
2mv

2 + ...) for the time component and mγ~v ≈ m~v + ... for the space components. The
second term in the time component is the non-relativistic kinetic energy, and the first term of the space
components is the non-relativistic momentum ~p. (The first term of the time component is the well-known
E = mc2 in the rest frame.) The 4-vector momentum consists of the relativistic energy E divided by c

as the time component and the relativistic momentum ~P as the space components.

Because Pµ is a vector, PµP
µ = −(P 0)2 + (P 1)2 + (P 2)2 + (P 3)2 is a scalar and must therefore be

invariant. The vector Pµ is different for every frame, but PµP
µ = −E

2

c2 + P 2 is the same in every frame,
and it is especially the same in the rest frame where it takes the value PµP

µ = −m2c2 according to (3.3).
The resulting formula usually written as

E2 −
∣∣∣~P ∣∣∣2c2 = m2c4 E2 − P 2c2 = m2c4 (3.4)

is called the mass-shell condition and relates relativistic energy and momentum to mass. It must be
obeyed by all real particles but not necessarily by virtual particles. If PµP

µ < 0 (timelike) then m2 > 0
and the particle is massive. If PµP

µ = 0 (lightlike) then m2 = 0 and the particle is massless. If PµP
µ > 0

(spacelike) then m2 < 0 and the particle is tachyonic.

In collision experiments the total initial 4-momentum Pµinitial must be equal to the total final 4-momentum
Pµfinal. Because they are vectors, they have to be specified in the same frame when written as an equation
Pµinitial = Pµfinal. However, if one squares both total momenta they still are the same in the same frame,
but as invariants they are also equal in different frames. Quite often in collision problems, one works in
the lab frame where one sets up the particles to be shot into an accelerator. On the other hand, one
would like to do a lot of calculations in the center of momentum frame where the net spatial momentum
is zero and a lot of quantities simplify. Thus, one has to square the 4-momenta.

14



4 Lie Groups, Lie Algebras and Spinors

4.1 General Comments about Abstraction

Often in mathematics and physics one defines things in the most concrete and intuitive way one can,
but sometimes using a more abstract definition allows to extend the applicability of the idea at hand.
For example, the first definitions for trigonometric functions sin θ and cos θ are usually in terms of real
rectangular triangles one can physically construct and measure. To measure the values of sin θ and cos θ
where θ is one of the angles less than 90◦, one can measure the length of the opposite or adjacent side
and divide it by the length of the hypotenuse. However, this definition does not help for cos(iθ) with
i =
√
−1. The definition of cosx by its Taylor series cosx = 1 − x2/2! + x4/4! + ... allows to evaluate

cos(iθ) by setting x = iθ, because this only uses known multiplication of complex numbers.

So far the discussion of rotations and Lorentz transformations has heavily focused on concrete representa-
tions like coordinates in space. After all dXµ → dXµ′ = Λµ

′

µ dX
µ is defined by how it acts on coordinate

differentials. From this basic starting point one can build more general vectors, dual vectors, and higher
rank tensors.

One thing that is missing is the possibility for comparing different continuous groups. For discrete groups
one can just compare their multiplication tables to see if they are the same. For continuous groups with
an infinite number of elements constructing and comparing multiplication tables is impossible. However,
for the groups relevant in physics there seem to be only a handful of distinct types of transformations
and everything else is built out of them. Rotations in space, for example, can be seen as the three types
rotations in the x-y, in the x-z, and in the y-z plane.

For comparing continuous groups, the following properties might be important:

• number of free parameters,
• abelian or non-abelian,
• dimensionality of matrix representations,
• real or complex.

The first two properties turn out to be important, but the other two do not because one single group can
have several matrix representations with different dimensions and the group of rotations in two dimensions
has real and complex representations.

4.2 Lie Groups

Most groups used in physics are Lie groups. This includes the groups SO(1,3), SU(3), SU(2), U(1) as well
as purely spatial rotations SO(N) used in the Standard Model. A Lie group is defined as group which
forms a manifold with a differentiable structure. What is important about this definition is that if one
knows how to do something infinitesimally, then one can figure everything else out, or almost everything.

For example, if one knows how to rotate by 1◦ in a plane, then one can build any integer rotation in
this plane by composing these. A rotation by 45◦ is 45 rotations by 1◦ applied one after the other, or if
the rotation by 1◦ is given as the matrix R(1◦) then the matrix R(45◦) is equal to R(1◦)45. This does
not allow a rotation by 0.5◦, but if R(ε) is given and ε is small enough, one can build a rotation about
any angle. If ε is an infinitesimal quantity, however, an infinite number of these infinitesimal rotations is
needed to come up with a finite rotation.

For Lie groups there is automatically a built-in mechanism for doing this compounding of infinitesimals.
A general element of a Lie group can be written as the exponential map

A = eigAv
A

(4.1)

where gA is said to generate the transformation associated with A and vA parametrizes it. (Roughly
speaking R(1◦) is the generator in the above analogy and 45◦ is the parameter.)

Note that if A is an N×N matrix, then so is gA. The expression gAv
A allows to combine transformations

of different types. For example, gAv
A = gxyα + gxzβ + gyzγ in SO(3) combines a rotation about α in
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the x-y plane, a rotation about β in the x-z plane and a rotation about γ in the y-z plane. This is good
because Rxy(α)Rxz(β)Ryz(γ) must combine to give a single rotation. One should think of gA as a dual
vector of generators and vA as a vector of parameters.

Rotations in the three-dimensional space as elements of SO(3) can serve as a concrete example. To define
the exponential the Taylor expansion of the exponential function

Ryz(θ) = eigyzθ = I + igyzθ +
1

2!
(igyzθ)

2 +
1

3!
(igyzθ)

3 + ...

is used where (igyzθ)
2 = −g2

yzθ
2 and so on. The generators gxy, gxz, gyz of SO(3) are the 3× 3 matrices

gxy =

0 −i 0
i 0 0
0 0 0

 gzx =

 0 0 i
0 0 0
−i 0 0

 gyz =

0 0 0
0 0 −i
0 i 0

 (4.2)

but are not themselves elements of SO(3). These matrices can be determined from

Ryz(θ) =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 =

1 0 0
0 1− 1

2!θ
2 + ... θ − 1

3!θ
3 + ...

0 −θ + 1
3!θ

3 − ... 1− 1
2!θ

2 + ...

 g2
yz =

0 0 0
0 1 0
0 0 1


and g3

yz = gyz. Finding gyz is a bit tricky, but verifying that gyz inserted into the Taylor expansion of
Ryz(θ) is rather easy. Thus, one can think about SO(3) in terms of the three infinitesimal generators gxy,
gyz, gzx.

The three matrices are not unique, and there are many different sets of three matrices being infinitesimal
generators of SO(3). However, also the chosen representation of the rotations is not unique because it is
based on the selection of a coordinate system and on the rotations in the three planes spanned by the
three axes. The generators form a basis in the tangent space of the group manifold at the origin, so the
analogy to coordinates is quite deep.

4.3 Lie Algebras

The discussion so far has been very coordinate dependent. The rotation Ryz(θ) and the three generators
are all based on the chosen coordinate system. However, one would like to generalize these ideas in a
more abstract way independent of coordinates.

There is a way to define rotations in three dimensions without referencing these matrices. Instead of the
generators as matrices in a given coordinate system one can specify the Lie algebra of the group. The
Lie algebra defines the algebra of the communicators defined as [g1, g2] = g1g2 − g2g1 for the generators
g1 and g2. For the generators of SO(3) one of the commutators is [gyz, gzx] = gyzgzx− gzxgyz = igxy, and
the complete Lie algebra for SO(3) can be written as

[gi, gj ] = i εijk gk (4.3)

where εijk is +1 for an even permutation of 123, is −1 for an odd permutation of 123 and is 0 otherwise.
(The upper and the lower indices do not matter in this context, and εijk is not a tensor because it does
not change components through coordinate transformations.) In this form, the generators of SO(3) are
specified independently of coordinates. A Lie group can be characterized in the vicinity of the identity
by the Lie algebra of its generators. The more general equation for Lie algebras is [gi, gj ] = f ijk gk where
one sums over all generators through index k, and where the terms f ijk are called the structure constants
of the group.

There are two directions to attack this problem. One can start from the rotations with coordinates,
determine the generators in (4.2) and find the corresponding Lie algebra as it has been done here. But
one can also start by looking for three 3 × 3 matrices satisfying (4.3), and one set of matrices found
this way would be the three generators (4.2). Using them and the exponential map, one could work
backwards to the rotations such as Ryz(θ). The generators (4.2) have been derived by looking on how
rotations in the three-dimensional space act on vectors and components of tensors. There are different
representations of SO(3) whose dimensions are a multiple of 3. The question is whether there is also a
two-dimensional representation of the rotations in three dimensions.
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4.4 Spinors in Three Dimensions

Starting with the Lie algebra (4.3) one can indeed find the matrices

gyz =
1

2

(
0 1
1 0

)
=

1

2
σx gzx =

1

2

(
0 −i
i 0

)
=

1

2
σy gxy =

1

2

(
1 0
0 −1

)
=

1

2
σz (4.4)

which satisfy it and where the matrices σx = σ1, σy = σ2, σz = σ3 are the Pauli spin matrices.

Using (4.1) the rotation about θ in the y-z plane becomes

Ryz(θ) = eigyzθ =

(
cos
(
θ
2

)
i sin

(
θ
2

)
i sin

(
θ
2

)
cos
(
θ
2

) )
and similar for Rzx and Rxy. These matrices satisfy U† U = I and detU = +1 and therefore belong to
SU(2) which act on complex two-component objects χ called spinors. They are two-component objects
but reflect rotations in three dimensions. Note that in the following matrix notation is used for spinors
and not index notation2 as for tensors.

In addition to the fact that there are objects called spinors this shows that in some sense SO(3) is the
same as SU(2) because they share the exact same Lie algebra such that SO(3) ∼ SU(2). They are the
same near the identity I, but they are globally different because Ryz(2π) give the different results

Ryz(2π) =

1 0 0
0 1 0
0 0 1

 = I Ryz(2π) =

(
−1 0
0 −1

)
= −I

on the left side for SO(3) and on the right side for SU(2). They both give the same result for Ryz(4π) = I.
Thus, SO(3) and SU(2) are both representations for the group of rotations in three dimensions, but SU(2)
is more faithful and SO(3) is degenerate similar to the situation in figure 2.3. If only working with tensors
one would be blind to the possibility Ryz(2π) = −I, and this is relevant because matter behaves like this.

Some people say that spinors know about the square root of the geometry because they probe geometry
more deeply than coordinates and tensors. They do not only satisfy the Lie algebra (4.3) but also the
anti-commutator algebra {σi, σj} = 2δijI2×2 which is called a Clifford algebra. The identity I2×2 is a
2× 2 matrix in spin space, and δij is the metric in R3, a fact that will come in handy later when dealing
with spinors in Special Relativity.

The fact that SU(2) is more faithful than SO(3) can also be illustrated by Quantum Mechanics. If one
only has integer spin, then by combining spins one can only ever build more integer spin states. However
if one allows half integer spin states, then one can build half and whole integer spin states just using half
spin states. Thus, if all one has are integer spin states or tensor states one stays in them, but from half
integer states one can build also the integer and tensor states. In this sense spinors know what tensors
know but know more.

When discussing tensors an important question was how they transform in order to build invariants
needed for the Lagrangian. This question is also important for spinors. If the transformations

χ→ χ′ = e
i
2~σ·~θ χ χ̃→ χ̃′ =

(
(e

i
2~σ·~θ)−1

)T
χ̃

hold where ~σ is the vector of Pauli matrices and ~θ is the vector of parameters, then χ̃†χ is invariant. The
dual χ̃ is built out of χ with χ̃ = gχ using the metric g for spinors. From R†gR = g for the metric and
from R†R = I for SU(2) it is clear that the metric is I and χ̃ = gχ = χ. Thus, χ†χ is invariant.

It follows that R† = (e
i
2~σ·~θ)† = e−

i
2~σ·~θ = R−1. Since ~θ is real and i → −i already makes the Hermitian

conjugate, the Pauli matrices must be Hermitian such that ~σ† = ~σ. (It can be made more explicitly by
Taylor expanding.) This is not very surprising here and the Pauli matrices are really Hermitian, but for
the relativistic case, it will be crucial because it is no longer the case.

2There is a formalism called the spinor index notation but is mostly used in supersymmetric Particle Physics and not in
ordinary Particle Physics.
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4.5 Spinors in Four Dimensions

When going from three-dimensional space to one- plus three-dimensional spacetime, vectors become 4-
vectors and rotations become Lorentz transformations which include rotations in space where the time
coordinate is not touched but also include boosts. To find the relativistic spinors one has to repeat again
the full development path from the generators to the Lie algebra and to spinor representations.

The six generators for Special Relativity corresponding to the three rotations Ryz, Rzx, Rxy and the
three boosts Bxt, Byt, Bzt are usually called J1, J2, J3 and K1, K2, K3. Fortunately the generators
corresponding to the rotations are

J1 =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 J2 =


0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0

 J3 =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 (4.5)

as one can guess from the rotations in space. If one takes the various boosts and considers their Taylor
expansion, then using the exponential map B = exp(iKδB) gives

K1 =


0 −i 0 0
−i 0 0 0
0 0 0 0
0 0 0 0

 K2 =


0 0 −i 0
0 0 0 0
−i 0 0 0
0 0 0 0

 K3 =


0 0 0 −i
0 0 0 0
0 0 0 0
−i 0 0 0

 (4.6)

for the generators for the boosts.

The algebra of SO(1,3) becomes

[Ji, Jj ] = i εijk Jk [Ki,Kj ] = −i εijk Jk [Ji,Kj ] = i εijkKk (4.7)

where the commutators of the generators corresponding to the rotations are taken from (4.3). Unfortu-
nately the rotations and boosts of SO(1,3) do not cleanly split from each other. The rotations build a
subgroup, but the boosts do not and the mixed commutators [Ji,Kj ] are not zero.

A common trick in physics is to build linear combinations for things that do not nicely separate. Thus,
one defines J+i = 1

2 (Ji + iKi) and J−i = 1
2 (Ji − iKi) and gets the algebra

[J+i, J+j ] = i εijk J+k [J−i, J−j ] = i εijk J−k [J+i, J−j ] = 0 (4.8)

which shows that SO(1,3) ∼ SO(3) × SO(3) at least near the identity. The separation is not between
rotations and boosts because the three J±i combine rotations and boosts.

For the group SO(3) of rotations in space the corresponding spinors are based on SU(2), and therefore for
the group SO(1,3) ∼ SO(3) × SO(3) of Lorentz transformations the corresponding spinors are based on
SU(2) × SU(2). Because each of the two SU(2) acts on complex objects with two components, SU(1,3)
respectively SU(2) × SU(2) acts on complex objects with four components, and these objects are called
spinors in four dimensions. The spinors in three dimensions are two-dimensional, and the spinors in four
dimensions, independent of whether in four space dimensions or one time and three space dimensions, are
four-dimensional. This is unfortunate since vectors and spinors have four components, but the components
mean totally different things. For a spinor, the first component has nothing to do with time. Vectors and
spinors also have very different transformation properties. This is only a misfortune in four dimensions.
In higher dimensions vectors and spinors have a different number of components.

The question is how a spinor χ transform. Rotations in three dimensions with the Pauli matrices satisfy
the anti-commutator algebra {σi, σj} = 2δijI2×2 for i, j ∈ {1, 2, 3} where ~σ is a vector of 2× 2 matrices
in spin space and gij = δij is the metric. For Lorentz transformations in spacetime one can guess
{γµ, γν} = 2ηµνI4×4 where the 4× 4 matrices γµ acts on four-component spinors.

For the transformation one might build exp
(
i
2γ

µθµ
)

with γµθµ replacing ~σ · ~θ but unfortunately this
does not work because θµ has only four parameters instead of the six parameters needed for the three
rotations and the three boosts. The problem is improper notation. In three dimensions labeling rotations
by axes instead of planes works fine, but it does not in spacetime. Thus, instead of (σ1, σ2, σ3) one can
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think of this equivalently as (−i[σ2, σ3],−i[σ3, σ1],−i[σ1, σ2]) using (4.3) and (4.4). Similarly one can
use σµν = − i

4 [γµ, γν ] with the obvious property σµν = −σνµ together with the angles ωµν also with the
property ωµν = −ωνµ to parametrize the transformation. This leads to the transformation

ψ → ψ′ = e
i
4σ

µνωµν ψ

σµν = {σ01, σ02, σ03, σ23, σ31, σ12}
ωµν = {ω01, ω02, ω03, ω23, ω31, ω12}

(4.9)

for the relativistic spinors ψ, and gives ψ → ψ′ = e
i
4 (σ23ω23+σ32ω32) ψ = e

i
2σ

23ω23 ψ = e
i
2σ

23θ ψ for the
example of a rotation by θ in the y-z plane because ωµν = (0, 0, 0, θ, 0, 0).

4.6 Dirac Matrices

To find the matrices γµ one can start from the Clifford algebra {γµ, γν}. One set of matrices are

γ0 = −i
(

0 I
I 0

)
γi = −i

(
0 σi
−σi 0

)
(4.10)

which are 4× 4 matrices built with the 2× 2 identity I and σi matrices defined in (4.3). They have the
nice properties:

• {γµ, γν} = 2ηµνI4×4 as guessed above
• (γ0)2 = −I and (γi)2 = +I as a consequence
• γµγν + γνγµ = 0 or γµγν = −γνγµ for µ 6= ν because ηµν is diagonal

as one can easily verify.

The γ matrices have an off-diagonal block structure, but the generators σµν , for example, for a boost σ0i

and similarly for a rotation σij

σ0i = − i
4

[γ0, γi] = − i
4

(γ0γi − γiγ0)

= − i
4

[
(−i)

(
0 I
I 0

)
(−i)

(
0 σi
−σi 0

)
− (−i)

(
0 σi
−σi 0

)
(−i)

(
0 I
I 0

)]
=
i

2

(
σi 0
0 −σi

)
σij =

1

2
εijk

(
σk 0
0 σk

) (4.11)

have a diagonal block structure where each block acts on one of the SU(2) in SO(1,3) ∼ SU(2) × SU(2).

Trying ψ̃ = ψ for the dual of the four-component spinor ψ to build an invariant ψ̃†ψ similar to the case
of the two-component spinors χ in SO(3) ∼ SU(2) does not work because in

ψ̃†ψ → (ψ̃′)†ψ′ =
(
e
i
4σ

µνωµν ψ
)†
e
i
4σ

µνωµν ψ = ψ†
(
e
i
4σ

µνωµν
)† (

e
i
4σ

µνωµν
)
ψ 6= ψ̃†ψ

only the (σij)† = σij are Hermitian but not the (σ0i)† = −σ0i while in the case SO(3) ∼ SU(2) all
generators were Hermitian. Thus, it would work for rotations but not for boosts. One can fix this with
the choice ψ̃ = iγ0ψ for the dual and therefore using the metric g = iγ0 because

ψ̃†ψ = (iγ0ψ)†ψ = −iψ†(γ0)†ψ = iψ†γ0ψ → (ψ̃′)†ψ′ = i(ψ′)†γ0ψ′ = i
(
e
i
4σ

µνωµν ψ
)†
γ0e

i
4σ

µνωµν ψ

= iψ†
(
e
i
4σ

µνωµν
)†
γ0e

i
4σ

µνωµνφ = iψ†γ0e−
i
4σ

µνωµνe
i
4σ

µνωµνψ = iψ†γ0ψ

using (γ0)† = −γ0 and where the step in the second line of the derivation needs some calculations. Thus,
with the definitions

g = iγ0 ψ̃ = gψ = iγ0ψ ψ̄ ≡ ψ̃† = iψ†γ0 (4.12)

where ψ̄ is called the adjoint, the quantity ψ̄ψ is invariant.
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The γµ matrices are matrices in spin space but build a vector in spacetime such that they have the unique
property of linking spin space to spacetime. Spin space is tied to the geometry at hand. In fact just as
vectors actually live in the tangent space at each point, or tangent bundle over all of spacetime, spinors
live in the spin bundle over spacetime. Since both spinors and vectors are tied at some level to spacetime,
if one transforms coordinates both get impacted whenever such indices appear.

To simplify notation the transformation (4.9) is written as ψ → ψ′ = S[Λ]ψ. Thus with

S[Λ] = e
i
4σ

µνωµν ψa → ψa
′

= S[Λ]a
′

aψ
a ψ̄b → ψ̄b′ = S[Λ]bb′ ψ̄b

and using indices for spinors, the quantity ψ̄ψ → ψ̄′ψ′ = ψ̄bS[Λ]bcS[Λ]caψ
a with S[Λ]bcS[Λ]ca = δba is

invariant.

In order to figure out how γµab transform one can transform each index such that γµab → γµ
′a′

b′ where µ→
µ′ is a Lorentz transformation, and the other two indices are indices for spinors. Thus, the transformation

is γµab → γµ
′a′

b′ = Λµ
′

µ S[Λ]a
′

a γ
µa
b S[Λ]bb′ written ordered ready for matrix multiplication. However, one

never has to deal with objects in spin space as such, because only invariants such as ψ̄ψ or ψ̄γµψ go into
a Lagrangian. (Note that ψ̄γµψ is a vector and is therefore in spacetime and not in spin space.)

5 Systems of Mechanics

5.1 Action Principles and Lagrangians

From the various formalisms describing the dynamics of a physical system including Newtonian, Hamil-
tonian and Lagrangian mechanics the Lagrangian approach based on an action principle S =

∫
L(q, q̇) dt

turns out to be most useful. Zero variation δS = 0 under a deformation of the path with some given
boundary conditions leads to the Euler-Lagrange equations of motion ∂L

∂q −
d
dt (

∂L
∂q̇ ) = 0. This is a good

starting point for Particle Physics because one can generalize it from an integral over time dt to a rela-
tivistic integral d4X, from point particles q(t) to fields φ(Xµ), and from Classical Mechanics with δS = 0
to Quantum Mechanics with path integrals. The action S is also a good starting point because it allows
naturally to realize symmetries of a system. If one wants to impose rotational symmetry, for example,
the Lagrangian needs to be a scalar.

An action S is a functional and not a function. For a function f(x) the maxima and minima can be found
by solving df

dx = 0. For a functional S[f(x)] one can take the variational derivative δS
δf(x) with respect

to the functions that are its arguments and solving δS
δf(x) = 0 gives the function f(x) which maximizes

or minimizes S. This approach will be used in the following for relativistic fields and not for particles
because relativistic particles have a lot of issues related to creation and annihilation such that fields turn
out to be more convenient. Fields naturally accommodate the creation and annihilation of particles.

The action S =
∫
L(q, q̇) dt is replaced by the integral

S =

∫
L(Φ, ∂µΦ) d4X (5.1)

with a Lagrangian density L for a field Φ. Later the integral will be replaced by a path integral, but just
looking at the classical equations of motion will reveal useful information. Thus considering a field Φ(Xµ)
and a region M of spacetime with boundary ∂M and boundary conditions Φ(Xµ|δM ) and considering
a deformed field configuration Φ′(Xµ) = Φ(Xµ) + δΦ(Xµ) with Φ′(Xµ|δM ) = Φ(Xµ|δM ) and therefore
δΦ(Xµ|δM ) = 0 leads to the variation of the action

δS =

∫
δL d4X =

∫ [
∂L
∂Φ

δΦ +
∂L

∂(∂µΦ)
δ∂µΦ

]
d4X

=

∫ [
∂L
∂Φ
− ∂

∂Xµ

(
∂L

∂(∂µΦ)

)]
δΦ d4X +

∫
∂

∂Xµ

(
∂L

∂(∂µΦ)
δΦ

)
d4X = 0

using integration by parts and the fact that partial derivative commutes with variation of the path. Since
δΦ is zero on the boundary, the second integral vanishes and can be ignored.
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Because this equation should be zero for arbitrary deformation of the path the factor δΦ can be anything
and can especially be non-zero. The Euler-Lagrange equations of motion are

∂L
∂Φ
− ∂

∂Xµ

(
∂L

∂(∂µΦ)

)
= 0 (5.2)

for a relativistic field Φ similar to the Euler-Lagrange equations in Classical Mechanics.

The starting point of Lagrangian mechanics is L = T−V fed by H = T+V , and there is a lot of machinery
that goes with connecting the Hamiltonian and the Lagrangian framework. Thinking of this in slightly
different terms results in a Lagrangian Lkinetic for the kinetic energy and a Lagrangian Linteractions for
the interactions, but one adds them to L = Lkinetic + Linteractions because the sign is not important as
long as the content of the added term for the interactions has not been specified.

5.2 Equations of Free Motion

A Lagrangian with only a kinetic but no interaction term is called the free-field Lagrangian. The program
is to start with the free-field Lagrangian and add the interactions by imposing a symmetry. This is how
all the interactions are added in the Standard Model. To write down the analog of L = 1

2mv
2 for

a relativistic field, one needs to consider scalar fields (spin-0, Higgs field), vector fields (spin-1, force
mediator particles), and spinor fields (spin- 1

2 , matter particles) with the corresponding Lagrangians

L0 = 1
2∂µΦ∂µΦ + 1

2

(
mc
~
)2

Φ2 L1 = 1
16πFµνF

µν + 1
8π

(
mc
~
)2
AµAµ L 1

2
= (~c)Ψ̄γµ∂µΨ +mc2Ψ̄Ψ

(5.3)

respectively.

The free Lagrangian for a scalar field Φ is Lfree = 1
2∂µΦ∂µΦ + 1

2 (mc~ )2Φ2 where the first
term looks similar to the classical kinetic energy but does not have a factor mass and
the second term contains the mass. This also works for massless particles. If the field
Φ is zero everywhere except for a small perturbation then this perturbation should have
energy even at rest which is proportional to how much the field is excited. Inserting this
Lfree into the Euler-Lagrange equations (5.2) gives

∂µ∂
µΦ−

(mc
~

)2

Φ = 0 (5.4)

using ∂L
∂Φ =

(
mc
~
)2

Φ and ∂L
∂(∂µΦ) = ∂µΦ. This is the Klein-Gordon equation.

The free Lagrangian for a vector field Aµ is Lfree = 1
16πFµνF

µν + 1
8πA

µAµ where Fµν = ∂µAν−∂νAµ and

Fµν = ηµκηνλFκλ. With ∂L
∂Aµ

= 1
4π

(
mc
~
)2
Aµ and ∂L

∂(∂νAµ) = 1
4πF

µν together with the Euler-Lagrange

equations (5.2) results in

∂µF
µν −

(mc
~

)2

Aν = 0 (5.5)

which is called the Proca equation. For m = 0 two Maxwell equations ∂µF
µν = 0 follow. (The other

two Maxwell equations require interactions. One can only get two of the four Maxwell equations from an
action principle.) This equation would be applicable also in case that the photons have mass.

The free Lagrangian for a spinor field Ψ is Lfree = (~c)Ψ̄γµ∂µΨ + mc2Ψ̄Ψ where Ψ and Ψ̄ are treated
as independent degrees of freedom in the Euler-Lagrange equations (5.2) for reasons to be discussed.
Varying with respect to Ψ̄ leads to

/∂Ψ +
mc

~
Ψ = 0 (5.6)

called the Dirac equation with /∂ = γµ∂µ. Varying with respect to Ψ results in mc2Ψ̄− ∂µ(~Ψ̄γµ) = 0 or

/∂Ψ̄− mc

~
Ψ̄ = 0

which is the adjoint of the Dirac equation (5.6). Dirac did not find the equation named after on the path
shown here via a Lagrangian and an action principle but by trying to determine the square root of the
Klein-Gordon equation (5.4).
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Any solution of the Dirac equation (5.6) is – not very surprising as the square root – also a solution of

the Klein-Gordon equation (5.4)
(
mc
~
)2

Ψ− ∂µ∂µΨ = 0 for each component of Ψ. The γ matrix which is
a 4× 4 matrix in spin space grabs the components of Ψ in the Dirac equation, mixes them up and relates
them to the original components of Ψ. However, in the form of the Klein-Gordon equation there is no γ
matrix anymore. One could put in a matrix in spin space but it would be the identity.

Acting with ∂ν on the Proca equation (5.5) gives ∂ν∂µF
µν −

(
mc
~
)2
∂νA

ν = 0. Because ∂ν∂µ = ∂µ∂ν
is symmetric with respect to swapping indices µ and ν and Fµν is antisymmetric, the term ∂ν∂µF

µν is
necessarily zero and this implies ∂νA

ν = 0. The Proca equation with ∂µ(µAν − ∂νAµ) − (mc~ )2Aν = 0
becomes ∂µ∂

µAν − (mc~ )2Aν = 0 because ∂µ∂
νAµ = ∂ν∂µA

µ = 0, and this is again the Klein-Gordon
equation (5.4) for each component of Aµ.

Starting from equations (3.3) and (3.4) in the form PµP
µ + m2c2 = 0, replacing Pµ with the operator

i~∂µ as usual in Quantum Mechanics and letting it act on Φ, the result is ∂µ∂
µΦ− (mc~ )2Φ. This is the

Klein-Gordon equation. In other words, the Klein-Gordon equation is really just reflecting the mass-shell
condition (3.4) which all real degrees of freedom must satisfy3.

5.3 Degrees of Freedom

To determine the degrees of freedom for particles one can either take the dimension of the configuration
space or half the dimension of the phase space. For fields the counting is more subtle. Technically a
field has an infinite number of degrees of freedom because one has to specify the field value at each point
in spacetime. However the motion of field fluctuations representing particles is covered by the Klein-
Gordon equation such that one can count the degrees of freedom per point left over. This approach is
called Wigner’s classification or the method of induced representations.

One starts with a given momentum Pµ and finds what can be changed without changing the this mo-
mentum because the momentum is already covered by the Klein-Gordon equation. The choice of the
momentum should not influence the number of degrees of freedom, and one can chose the rest frame to
do the counting. Thus Pµ has only the time component which is non-zero. From the transformations
of SO(1,3) only the rotations belonging to the so-called little group SO(3) of SO(1,3) do not change the
momentum. (It is not obvious, but the degrees of freedom left over in any other frame is the same.) For
spin-0 scalars the Klein-Gordon equation does it all and there are no more degrees of freedom left.

For fluctuations of the field representing particles with a non-trivial spin a review of some essential results
for angular momentum in three-dimensional non-relativistic Quantum Mechanics will give some insight
because only the little group is relevant here. Angular momentum is always quantized. Orbital angular
momentum L is just the quantum mechanical version of classical angular momentum. Spin S on the
other hand behaves very similar to orbital angular momentum but cannot be give a spacetime picture. It
is an internal property of the particle and its total magnitude cannot be changed as the orbital angular
momentum can be changed. The value L2 can be changed, but S2 is fixed forever. A spin- 1

2 particle is
always a spin- 1

2 particle. Orbital angular momentum takes integer values, but spin can take half integer
values as the Stern-Gerlach experiment shows. If one measures the spin in the z-direction, the outcome
for a spin-0 particle is always Sz = 0, but can be − 1

2 or + 1
2 for a spin- 1

2 particle and −1, 0 or +1 for a
spin-1 particle. The degrees of freedom for a spin- 1

2 particle is 2 for how much is spin up and how much is
spin down, and the degrees of freedom for a spin-1 particle is 3. The number of degrees of freedom is the
dimension of the corresponding Hilbert space. Because S2 = S(S + 1)~2 the inequality S2 > S2

z = S2~2

must hold. The reason is that all the spin would be along the z-axis if S2 = S2
z , and all the three spin

components with Sx = Sy = 0 would be known simultaneously.

This gives a sense for how many degrees of freedom one should expect. For a scalar field, there should
be nothing left because the Klein-Gordon equation is all there is. For the case of the spinor field there
should be two degrees of freedom left in addition to momentum covered by the Klein-Gordon equation,
and for the vector field there should be three additional degrees of freedom. However, the spinor field as a
vector in spin space with four complex components seems to have eight and not three additional degrees
of freedom, and the vector field with four real components seems to have four and not three additional

3Similarly if one starts with p2

2m
+ V = E non-relativistically and replaces ~p by −i~~∇ and E by i~ ∂

∂t
, then one gets the

time-dependent Schrödinger equation.
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degrees of freedom. The Dirac and the Proca equations are not just the Klein-Gordon equations in a
different form but contain more information. These additional constraints reduce the actual number of
degrees of freedom to the number of degrees of freedom expected from Wigner’s classification scheme.

In the case of the Proca equation (5.5), one can go to the momentum space via i~∂µ → Pµ respectively
∂µ → − i

~Pµ to get

− i
~
Pµ

(
− i
~
PµAν +

i

~
P νAµ

)
−
(mc

~

)2

Aν = − 1

~2
Pµ (PµAν − P νAµ)−

(mc
~

)2

Aν = 0

and with Pµ = (−mc,~0) in the rest frame

1

~2
(mc)2A0 +

1

~2
(mc)2A0 −

(mc
~

)2

A0 = 0
1

~2
(mc)2Ai −

(mc
~

)2

Ai = 0

for the time coordinate ν = 0 and any of the space coordinates ν = i. From the equation for ν = 0 it
follows that A0 must be zero while the equation for ν = i is trivially satisfied. Thus there are three values
of Ai to be selected corresponding to three degrees of freedom.

In the case of the Dirac equation (5.6), the equation in momentum space becomes −iγµPµΨ +mcΨ = 0
or iγ0mcΨ +mcΨ = 0 in the rest frame where Pµ = (−mc, 0, 0, 0). Thus (iγ0 + I)Ψ = 0 ori

−i


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


+


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





Ψ1

Ψ2

Ψ3

Ψ4

 =


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1




Ψ1

Ψ2

Ψ3

Ψ4

 =


0
0
0
0


using (4.10). From this follows Ψ1 = −Ψ3 and Ψ2 = −Ψ4 leaving two complex or four real degrees of
freedom. Therefore Wigner’s classification scheme seems to fails. This is however not a failure of the
Dirac equation but the wisdom of it because it knows about antimatter. The Dirac equation describes
the electron and the positron, each of which is a spin- 1

2 particle with two degrees of freedom in addition
to the part covered by the Klein-Gordon equation.

5.4 Solutions to the Dirac Equation

To find solutions for the Dirac equation (5.6) one can work in the rest frame where ∂Ψ
∂x = ∂Ψ

∂y = ∂Ψ
∂z = 0

and the Dirac equation reduces to γ0∂0Ψ + mc
~ Ψ = 0. This equation can be written as

− i
c

∂

∂t
Ψ3 +

mc

~
Ψ1 = 0 − i

c

∂

∂t
Ψ4 +

mc

~
Ψ2 = 0 − i

c

∂

∂t
Ψ1 +

mc

~
Ψ3 = 0 − i

c

∂

∂t
Ψ2 +

mc

~
Ψ4 = 0

in components. The four solutions

Ψ
(1)
rest = e−i

mc2

~ t 1√
2


1
0
1
0

 Ψ
(2)
rest = e−i

mc2

~ t 1√
2


0
1
0
1



Ψ
(3)
rest = ei

mc2

~ t 1√
2


0
1
0
−1

 Ψ
(4)
rest = ei

mc2

~ t 1√
2


−1
0
1
0


(5.7)

solve these equations. From Quantum Mechanics one expects the time dependence of a state to evolve
as e−i(E/~)t, and for particles at rest the energy is E = mc2. Thus the first two solutions show the usual
behavior, but the second two solutions do not.

The second two solutions describe antimatter, and there are different ways to interpret that. One can
think of the missing minus sign as negative energy4, but Feynman and Stückelberg proposed that the

4Dirac interpreted the negative energy as a sea of filled states. To create a particle one has to pull a particle out of this
sea, and the electron is this particle while the empty space left behind is the positron as the antiparticle of the electron.
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corresponding particle has positive energy and moves backwards in time. Antimatter moving backwards
in time is the much more natural interpretation than the negative energy assumption, and it will turn
out to be useful in Feynman diagrams where changing a particle into an antiparticle just reverses the
arrow of time.

Of the four solutions in (5.7) Ψ
(1)
rest and Ψ

(2)
rest represent particles and Ψ

(3)
rest and Ψ

(4)
rest represent antiparticles.

One remaining question is what the difference between the two particle solutions is and what the difference
between the two antiparticle solutions is. Recalling that the spin Sz along the z-axis is

Sz =
~
2

(
σz 0
0 σz

)
=

~
2


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


shows that

SzΨ
(1)
rest =

~
2

Ψ
(1)
rest SzΨ

(2)
rest = −~

2
Ψ

(2)
rest SzΨ

(3)
rest = −~

2
Ψ

(3)
rest SzΨ

(4)
rest =

~
2

Ψ
(4)
rest

for particles at rest. However one is not mainly interested in fermions at rest but in moving fermions
because one wants to understand scattering events on one side and because there are or may be massless
fermions which cannot be brought to rest on the other side.

Starting from the ansatz Ψ(X) = Ae−ikµX
µ

u(kµ) for which ∂µΨ = −ikµΨ the Dirac equation becomes
(i~γµkµ−mc)Ψ = 0 which is algebraic. Plane waves as a guess for the form of the solution is almost always
what one uses in case of a definite direction and magnitude of propagation but completely undefined
location. In this ansatz A is a normalization factor, e−ikµX

µ

is the plane wave, and u(kµ) is the spin.
One can show that kµ = ± 1

~P
µ and will get

Ψ(1) = Aei
PµX

µ

~


E
mc2 −

Pz
mc

− Px
mc − i

Py
mc

1
0

 Ψ(2) = Aei
PµX

µ

~


− Px
mc + i

Py
mc

E
mc2 + Pz

mc
0
1


= Aei

PµX
µ

~ U (1) = Aei
PµX

µ

~ U (2)

Ψ(3) = Ae−i
PµX

µ

~


0
1

− Px
mc + i

Py
mc

− E
mc2 + Pz

mc

 Ψ(4) = Ae−i
PµX

µ

~


1
0

− E
mc2 −

Pz
mc

− Px
mc − i

Py
mc


= Ae−i

PµX
µ

~ V (1) = Ae−i
PµX

µ

~ V (2)

(5.8)

as the four solutions of the Dirac equation (5.6) in any frame where U (1) and U (2) are particle spinors

and V (1) and V (2) are antiparticle spinors. Note that Ψ(i) → Ψ
(i)
rest for Px = Py = Pz = 0 when the

particle or antiparticle is at rest.

The spinors depend on the energy and momentum. This is very different from non-relativistic Quantum
Mechanics where solving the Schrödinger equation always gives solutions ψ = ψspace(~x, t)χ with a spatial
part depending on ~x and t and a constant spinor χ with no dependence of ~x and t if it is a particle with
spin. In relativistic Quantum Field Theory the relativistic spinors become much more complicated and
the spinorial part is non-trivially dependent on energy and momentum.

One consequence is that the solutions (5.8) are no eigenstates of Sz unlike the solutions (5.7) in the
rest frame. When something is at rest, there is no preferred direction is space, but if it is moving, the
direction along which it is moving is special. Thus, if one does not select the spin Sz along the z-axis but
the spin S~P along the direction of the momentum, there might be some simplifications. One can chose
coordinates such that the z-axis points in the direction of the momentum with Px = Py = 0 and P = Pz.
This leads back to the nice structure where either only the first and third or only the second and fourth
component of the spinor is non-zero. Thus, the solutions satisfy

SzΨ
(1) =

~
2

Ψ(1) SzΨ
(2) = −~

2
Ψ(2) SzΨ

(3) = −~
2

Ψ(3) SzΨ
(4) =

~
2

Ψ(4)
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and are therefore eigenstates of Sz. The general solutions (5.8) are not eigenstates of Sz, because the
z-axis is a arbitrary direction.

One usually thinks that if things are rotationally invariant, x, y, z should be interchangeable, but Px,
Py, Pz appear in very different ways in the solutions (5.8). The reason is that the γ matrices are different
for the different coordinates. It is the Dirac equation (5.6) itself which treats x, y, z not the same.

5.5 Helicity and Chirality

It is often useful to work in terms of eigenstates of spin along the direction of motion which are referred
to as helicity states. In Particle Physics helicity is defined as the spin operator along the momentum
direction.

Characterizing particle states with helicity is almost just like characterizing
them by Sz. For instance if a particle has Sz = +~

2 , one can always rotate

the coordinate system so that the same particle gets Sz = −~
2 . It is still a

useful classification if one sticks to one coordinate system. Helicity is similar.
If one has a state with positive helicity S~P = +~

2 then one can turn it into a

state with negative helicity S~P = −~
2 by boosting in the plane of ~P and t to

a frame which is moving faster than the particle such that the momentum of
the particle is reversed.

However, if the particle is massless there is no way to reverse ~P with a boost or a change of the coordinate
system. So for massless particles their helicity is an unchangeable intrinsic property just like their total
spin. In fact for a given massless particle flavor one might as well think of the S~P = ±~

2 states as two
different particles.

The Wigner classification for massive particles to classify the degrees of freedom gives the particle a
four-momentum and then asks what transformations are possible without changing the momentum. If
the counting of the degrees of freedom is independent of the frame, then one can pick the simplest frame
which is the rest frame and can apply the rotations in SO(3) without changing the four-momentum.

For massless particles there is also a four-momentum with the speed of
light, but going to the rest frame is not an option. However one can chose
a momentum along one of the spatial axes. Selecting the x-axis means
that P 0 = E

c and P 2 = P 3 = 0, but because PµPµ = m2c2 = 0 for

massless particles P 1 = E
c as well. The transformations which do not change the four-momentum are

the ones of SO(2). Rotations in the plane perpendicular to the momentum cannot change the helicity.

There are cases where helicity and chirality are describing the same thing, but in general they are not.
For purposes of the Standard Model especially when talking about spontaneous symmetry breaking or
the weak interaction, one should think in terms of chirality and not in terms of helicity. Chirality has to
do with the block structure

σ0i =
i

2

(
σi 0
0 −σi

)
σij =

1

2
εijk

(
σk 0
0 σk

)
of the generators (4.11) for boosts on spinors on the left side and for rotations on spinors on the right
side where the indexed 2 × 2 matrices σ are the Pauli matrices. The upper two components and the
lower two components of the four components of a spinor which is a solution of the Dirac equation (5.6)
are transformed independently by boosts and by rotations and therefore by all Lorentz transformations
because using the exponential map the rough matrix form of the generators is going essentially to descend
to the actual transformation matrix. The block diagonal generators leads therefore to block diagonal
transformations. Because the first two and the second two components of the spinor Ψ get transformed
independently, one can use

Ψ =


Ψ1

Ψ2

Ψ3

Ψ4

 =

(
Ψ+

Ψ−

)
Ψ+ =

(
Ψ1

Ψ2

)
Ψ− =

(
Ψ3

Ψ4

)
(5.9)
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where Ψ± are called the Weyl spinors or the chiral spinors and determine the chirality of the spin- 1
2

particles. They transform oppositely under boosts and alike under rotations, and they do not mix.

The free Lagrangian for a spinor field Ψ is

LDirac = (~c)Ψ̄γµ∂µΨ +mc2Ψ̄Ψ

= −~c
(
iΨ†−∂µσ

µΨ− + iΨ†+∂µσ̄
µΨ+

)
+mc2

(
Ψ†−Ψ+ + Ψ†+Ψ−

)
where Ψ̄ = (Ψ†−,Ψ

†
+), σµ = (I, σi) and σ̄µ = (I,−σi). The mass term mc2Ψ̄Ψ mixes Ψ+ and Ψ−, but

this does not happen in the first term. Thus if m = 0 then there is no mass term, and the Lagrangian
becomes the sum of a term with only Ψ− and a term with only Ψ+. This means that it is completely
consistent to think of a theory containing only the term Ψ− or only the term Ψ+ as long as the particle
is massless. However in order to have mass both parts Ψ− and Ψ+ are needed. If one of the two parts is
zero, the mass term is also zero.

The two Weyl equations σ̄µ∂µΨ+ = 0 and σµ∂µΨ− = 0 describe each a particle/antiparticle pair for
m = 0 and have therefore two real degrees of freedom. Working with Ψ+ and Ψ− for massless spinors is
exactly the same as working with positive or negative helicity states. To see this, one can first align the
z-axis of the coordinate system to the direction of the momentum to make Px = Py = 0. Further follows
from m = 0 and the mass-shell condition (3.4) E2−P 2c2 = m2c4 that E = ±Pc. Thus the solutions (5.8)
become

Ψ(1) = Aei
PµX

µ

~


0
0
1
0

 Ψ(2) = Aei
PµX

µ

~


0
0
0
1

 Ψ(3) = Ae−i
PµX

µ

~


0
1
0
0

 Ψ(4) = Ae−i
PµX

µ

~


1
0
0
0


and obviously form a basis for (5.9).

However there is a way to define the splitting into Ψ+ and Ψ− even before one takes the massless limit.
That is what chirality is. Thinking about helicity before taking the massless limit is not useful because one
can change helicity by changing the coordinate system. But chirality is not something one can influence
by changing the coordinate system because of the block diagonal form of the generators (4.11). Chirality
states that if one is in state Ψ+ one stays in state Ψ+, and if one is in state Ψ− one stays in state Ψ−
independent of whatever one does to the coordinates.

Note that everything done here is couched in the particular choice of the γ matrices that has been made.
Thus the question is what happens if one picks a different set of γ matrices, and one would like to have a
definition of positive and negative chirality independent of the choice of the basis. This is possible using
γ5 = −iγ0γ1γ2γ3 which is written in terms of 2× 2 matrices

γ5 =

(
I 0
0 −I

)
(5.10)

in the particular representation used here. One can form a projection operator P± = 1
2 (I ± γ5) with

P+Ψ = Ψ+ and P−Ψ = Ψ−. Thus in the example of the chosen γ matrices γ5 can be used to project
an arbitrary four-component spinor onto the chiral pieces Ψ+ and Ψ−. The introduction of γ5 is a way
to distinguish positive and negative chirality independent of the choice of the γ matrices. As it will turn
out, weak interaction, unlike electromagnetic and strong interaction, will treat Ψ+ differently than Ψ−.

6 Interactions

6.1 Local Gauge Invariance

After studying free Lagrangians (5.3) for scalar, vector and spinor fields with their respective equations
of motions, the next step is the introduction of interactions. Most interesting is the Dirac Lagrangian
because the Standard Model is to a great deal concerned with interactions between matter particles,
matter consists of fermions, and fermions are spin- 1

2 particles. The free or kinetic terms in all three free
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Lagrangians typically involve derivatives for velocities as well as mass terms for the rest mass energy
which are always quadratic in the field in question. This will turn out to be important.

If two different fields are going to interact, some constant times the product of the two fields describes
such an interaction. The product of a field with itself represents a mass term, but the product of two
fields means an interaction between the two fields. Examples of terms in the Lagrangian for a scalar field
Φ interacting with a spinor field Ψ are ΦΨ or Φ ∂µΨ. A priori one might think that one could add two
different free Lagrangians and add any interaction terms to the Lagrangian as long as they are Lorentz
invariant, and in a certain sense one can, but it turns out that one can describe every experimental
observation by only introducing interaction terms that follow from an elegant symmetry principle. These
symmetry principles are called gauge invariance which reduces the huge number of possible terms to a
handful of used terms.

There is a recipe for a gauge theory:

1. Begin from a free Dirac Lagrangian with a global symmetry.
2. Promote the global symmetry to a local gauge symmetry with the addition of a compensating gauge

field that itself must transform in a specific way. This will introduce interactions.
3. Allow the gauge field to propagate by adding a field strength term to the Lagrangian.

This recipe is shown step by step in an example for the abelian case. The first step is starting from the
free Dirac Lagrangian L = ~cΨ̄γµ∂µΨ +mc2Ψ̄Ψ from (5.3) where Ψ̄ = iΨ†γ0. Further one can transform
the spinor field Ψ→ Ψ′ = eiqφΨ where the transformation is not a coordinate transformation but just a
multiplication with a complex number of magnitude 1 which is constant because q and φ are supposed
to be constants. It follows Ψ̄ → Ψ̄′ = Ψ̄e−iqφ, and it therefore follows that this is a symmetry of the
Lagrangian because

L → L′ = ~cΨ̄e−iqφγµ∂µeiqφΨ +mc2Ψ̄e−iqφeiqφΨ = L

since eiqφ is a constant such that e−iqφγµ∂µe
iqφ = e−iqφeiqφγµ∂µ. Multiplication with eiqφ is a global

transformation.

In the second step this global transformation is promoted to a local transformation Ψ→ Ψ′ = eiqφ(Xµ)Ψ
where φ = φ(Xµ) can have different values at different points in spacetime. The Lagrangian becomes

L → L′ = ~cΨ̄e−iqφγµ∂µeiqφΨ +mc2Ψ̄e−iqφeiqφΨ

but here e−iqφγµ∂µe
iqφ 6= e−iqφeiqφγµ∂µ because of the dependence on Xµ. The mass term stays the same

because mc2Ψ̄e−iqφeiqφΨ = mc2Ψ̄Ψ, but the whole Lagrangian is not invariant under this transformation.
Using the product rule the first term of the Lagrangian becomes

~cΨ̄e−iqφγµ∂µeiqφΨ = ~cΨ̄e−iqφγµ
[
iq
(
∂µφ

)
eiqφΨ + eiqφ∂µΨ

]
= i~cqΨ̄γµ

(
∂µφ

)
Ψ + ~cΨ̄γµ∂µΨ

where only one term causes problems. To get rid of it, the solution is to change the ordinary derivative
∂µ to the so-called covariant derivative Dµ = ∂µ+ iqAµ where Aµ is a new field such that the Lagrangian
becomes

L = ~cΨ̄γµDµΨ +mc2Ψ̄Ψ = ~cΨ̄γµ∂µΨ + iq~cΨ̄γµAµΨ +mc2Ψ̄Ψ

which transforms with Ψ→ Ψ′ = eiqφΨ using the product rule to

L′ = ~cΨ̄e−iqφγµ∂µeiqφΨ + iq~cΨ̄e−iqφγµA′µeiqφΨ +mc2Ψ̄e−iqφeiqφΨ

= ~cΨ̄e−iqφγµ
[
iq
(
∂µφ

)
eiqφΨ + eiqφ∂µΨ

]
+ iq~cΨ̄γµA′µΨ +mc2Ψ̄Ψ

= ~cΨ̄γµ∂µΨ + iq~cΨ̄γµ
(
∂µφ

)
Ψ + iq~cΨ̄γµA′µΨ +mc2Ψ̄Ψ

where canceling factors e−iqφeiqφ have been removed. If A′µ = Aµ − ∂µφ(Xν) one gets

L′ = ~cΨ̄γµ∂µΨ + iq~cΨ̄γµAµΨ +mc2Ψ̄Ψ = L

which is invariant. The term iq~cΨ̄γµAµΨ is an interaction. Starting from a global symmetry turned
into a local symmetry did not only lead to a new field A which is called a gauge field but also to an
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interaction between the original field Ψ and the new field A. The gauge field A however cannot propagate
and just constitutes a background. That means if one tries to apply an action principle to get an equation
of motion for A, one would not get a very interesting result, but one would certainly want to have an
equation of motion for A. If one wants A allow to propagate and to get useful equations of motion for it,
one has to give it a kinetic term.

That is what one does in the third step. It turns out that Aµ is a dual vector field and it is clear
which kinetic term one has to use. The Lagrangian for a vector field in (5.3) is the Proca Lagrangian
L = 1

16πFµνF
µν + 1

8πA
µAµ where Fµν = ∂µAν − ∂νAµ. The total Lagrangian becomes

L = ~cΨ̄γµDµΨ +mc2Ψ̄Ψ +
1

16π
FµνF

µν +
1

8π
AµAµ

but it turns out not to be invariant under the transformation Aµ → A′µ = Aµ − ∂µφ. The first two

terms are obviously invariant. The third term is FµνF
µν = (∂κAλ−∂λAκ)ηµκηνλ(∂µAν −∂νAµ) without

constant factors and represents the kinetic term. It becomes

F ′µνF
′µν = (∂κA

′
λ − ∂λA′κ)ηµκηνλ(∂µA

′
ν − ∂νA′µ)

= (∂κAλ − ∂κ∂λφ− ∂λAκ + ∂λ∂κφ)ηµκηνλ(∂µAν − ∂µ∂νφ− ∂νAµ + ∂ν∂µφ)

= (∂κAλ − ∂λAκ)ηµκηνλ(∂µAν − ∂νAµ) = FµνF
µν

which shows that it is invariant because partial derivatives commute such that ∂µ∂νφ = ∂ν∂µφ. The last
term representing the mass of the field Aµ is AµAµ without constant factors and becomes

A′µA′µ = (Aµ − ∂µφ)ηνµ(Aν − ∂νφ)

which is not the same as AµAµ. Thus the last term must vanish, and the mass of the field Aµ must as
a consequence be zero. This is an important observation because there are massive gauge fields in the
world. (That is where the Higgs mechanism will play a role.) The total Lagrangian is therefore

L = ~cΨ̄γµDµΨ +mc2Ψ̄Ψ +
1

16π
FµνF

µν (6.1)

with Fµν = ∂µAν − ∂νAµ.

The Lagrangian (6.1) is invariant under local U = eiqφ transformations with U†U = I. This corresponds
to the group U(1) and therefore to electromagnetism. The vector field Aµ is the usual electromagnetic
4-vector potential which transforms under this gauge symmetry as Aµ → A′µ = Aµ−∂µφ. In this context
Aµ is called a gauge field which mediates the electromagnetic interaction. One can identify q as the
coupling strength of Ψ to the electromagnetic field and therefore q is the electric charge. The tensor Fµν
is the electromagnetic field strength.

Electromagnetism comes usually in the form of the E-field and the B-field with the Maxwell equations
and so on, but in this form it has no connection to the weak and strong interactions and gravity. However,
in the form shown here as a gauge theory with the Lagrangian (6.1) it is the starting point for Quantum
Electrodynamics.

The recipe for a gauge theory has been applied to an abelian symmetry. Later it will be extended to
non-abelian symmetries, but before that a few clarifications are necessary, because the weak and the
strong interactions are based on a non-abelian symmetry. To simplify the non-abelian case, the abelian
case can be formulated differently.

When trying to make the symmetry local, the main problem is that the derivative did not satisfy the
property needed because Ψ̄γµ∂µΨ→ Ψ̄e−iqφγµ∂µe

iqφΨ 6= Ψ̄e−iqφγµeiqφ∂µΨ. This has been fixed with the
covariant derivative Dµ = ∂µ + iqAµ which gives Ψ̄γµDµΨ → Ψ̄e−iqφγµD′µe

iqφΨ = Ψ̄e−iqφγµeiqφDµΨ,

and the magic trick is DµΨ → D′µe
iqφΨ = eiqφDµΨ. This is equivalent to what is done in General

Relativity where the ordinary derivative ∂µ does not transform as a tensor under a general coordinate

transformation Xµ → Xµ′(Xµ). To fix the problem the covariant derivative ∂µ → Dµ + Γ... has been
introduced where Γ represents the Christoffel symbols which play the role of gauge fields in General
Relativity. Here the transformation is not a spacetime transformation5 but in General Relativity it is,
and these spacetime transformations are localized. Thus gravitation comes out of a similar argument.

5In the Standard Model the transformations are all in an internal space, but there is a way to geometrize all of this.
One can take these internal spaces and consider them as part of a hybrid spacetime. This is a program called fiber bundle.

28



In order to restructure the abelian theory for the non-abelian case, note that Fµν = ∂µAν−∂νAµ is gauge
invariant for the abelian case but is not for the non-abelian case. A different route to getting a gauge
invariant field strength is to consider

[Dµ, Dν ]Ψ = (∂µ + iqAµ)(∂ν + iqAν)Ψ− (∂ν + iqAν)(∂µ + iqAµ)Ψ

= (∂µ + iqAµ)(∂νΨ + iqAνΨ)− (∂ν + iqAν)(∂µΨ + iqAµΨ)

= ∂µ∂νΨ + iqAµ∂νΨ− q2AµAνΨ + iq(∂µAν)Ψ + iqAν∂µΨ

− ∂ν∂µΨ− iqAν∂µΨ + q2AνAµΨ− iq(∂νAµ)Ψ− iqAµ∂νΨ

= iq(∂µAν − ∂νAµ)Ψ

with the consequence Fµν = − i
q [Dµ, Dν ] which will be very helpful in the non-abelian case because it is

gauge invariant even if it is a non-abelian symmetry. (Note that the Riemann curvature tensor in General
Relativity is derived with the commutator of the covariant derivative.)

To summarize the Lagrangian for electromagnetism (6.1) with Fµν = − i
q [Dµ, Dν ] is invariant under local

U(1) transformations. The interaction term is dictated by the symmetry and it turns out that it agrees
with experiments.

6.2 Quantum Chromodynamics

The development for the non-abelian case of the strong interactions will follow a very similar path as the
abelian case of electromagnetism. The symmetry is based on SU(3) acting in a three-dimensional space
with eight generators instead of U(1) acting in a one-dimensional space with one generator. Because
all matter consists of spin- 1

2 particles, Quantum Chromodynamics will at least be partly described by a
spinor field Ψ with four components in spin space but in addition with the three components Ψr, Ψb,
Ψg in color space. Color space with the three colors red, blue, green as a basis is three-dimensional and
has nothing to do with the spin space which is four-dimensional. One way to keep them separate is that
the four components of the spinor are affected but not the three color components if one does a Lorentz
transformation, and if one does an SU(3) transformation the three color components are affected but not
the four spinor components. Spaces such as the color space are often called iso-spaces or internal vector
spaces just to make sure one is not confused between those vector spaces and the vector spaces more
related to spacetime. Note however that also in spacetime there are two kinds of vector spaces, one with
vector type indices corresponding to tensors and the spin space which both transform under spacetime
transformations but transform differently.

Transformations of SU(3) act on the vectors with the three color components. Each of the three com-
ponents Ψr, Ψb, Ψg is a four-component spinor. The strong interaction only acts on the six flavors of
quarks which are the up u and down d, the charm c and strange s, and the top t and bottom b quark.
Each of these six types of quarks can come in red r, blue b, and green g which creates a multiplicity of
types of quarks. The different flavors of quarks have different mass and electrical charge, but a red up
quark and a blue up quark are actually identical except that one is red and one is blue and they just
represent different color states. For each flavor of quark there is a flavor of antiquark ū, d̄, c̄, s̄, t̄, b̄, with
the possible colors antired r̄, antiblue b̄, antigreen ḡ. Note that red, blue, green as a kind of charge are
not three values of the same charge like +e and −e for the electrical charge, but are three distinct types
of charge each with two values r, r̄ or b, b̄ or g, ḡ. The reason why the strong interactions only act on
quarks is that they are the only particles carrying color the same way as the electromagnetic interaction
only acts on particles with electric charge. However in nature one never finds single quarks but only
bound states of quarks and only bound states of quarks which are colorless.

Quantum Chromodynamics describing the strong interactions is understood as a theory of local SU(3)
invariance acting on quarks only. The free Dirac Lagrangian L = ~cΨ̄γµ∂µΨ + mc2Ψ̄Ψ is the starting
Lagrangian with Ψ̄ = iΨ†γ0 which includes apart from a transpose in spin space also a transpose in color
space because Ψ is also a vector in color space. This Lagrangian is invariant under global

Ψ→ Ψ′ = e−i
q
~cλ·φΨ A = eigAv

A

where the equation on the right side is the exponential map (4.1) from Lie algebras to Lie group elements.
Comparing the two equations shows that λ corresponds to the vector gA of matrix generators while φ
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corresponds to the vector vA of paramters. Because SU(3) has eight generators, λ and φ have both eight
elements. The factor g = q

~c is a constant which will turn out to determine the coupling strength for
all the three types of color charge6 because SU(3) mixes the three colors and symmetry requires that all
couple equally. The quantity φ will get a dependence on spacetime when going from the global to the
local symmetry while the quantity λ is a set of fixed generators. Giving λ indices would make λaij where
the a is an index in the generator space and the i and j are in the color space. Because SU(3) is the
related group of transformations, λ have to be 3 × 3 matrices and thus needs two indices i and j, but
because there are eight of them, the index a is needed. This is a generalization of the case U(1) to the
non-abelian group SU(3) with multiple generators.

In the next step, the global symmetry is turned into the local one

Ψ→ Ψ′ = e−i
q
~cλ·φ(Xµ)Ψ

with φ = φ(Xµ). The Lagrangian is no longer invariant under local SU(3), but with the covariant
derivative Dµ = ∂µ + ig λ · Aµ instead of ∂µ similar to the case in electromagnetism one can make
the Lagrangian invariant under local SU(3). One needs eight gauge fields Aµ, one for each generator.
Introducing the gauge fields Aµ does not make the Lagrangian invariant, one first has to figure out how
the eight fields Aµ transform to make it invariant. Thus, the covariant derivative has to transform as
DµΨ→ D′µΨ′ = e−igλ·φDµΨ for a spacetime dependent φ. Using

DµΨ = ∂µΨ + ig λ ·AµΨ→ ∂µΨ′ + ig λ ·A′µΨ′ = ∂µ
(
e−igλ·φΨ

)
+ ig λ ·A′µe−igλ·φΨ

= ∂µ
(
e−igλ·φ

)
Ψ + e−igλ·φ∂µΨ + ig λ ·A′µe−igλ·φΨ

the equation

∂µ
(
e−igλ·φ

)
Ψ + e−igλ·φ∂µΨ + ig λ ·A′µe−igλ·φΨ = e−igλ·φ (∂µΨ + ig λ ·AµΨ)

is satisfied if λ · A′µ = e−igλ·φ λ · Aµ eigλ·φ + i
g∂µ(e−igλ·φ)eigλ·φ. Comparing this to the U(1) case where

λ was a number shows that the result is much uglier. The fact that λ is a matrix in color space in
the non-abelian group for Quantum Chromodynamics does not allow to move factors freely around such
that this expression cannot be simplified. The interaction term added to the Lagrangian by ~cΨ̄γµDµΨ
is ig~cΨ̄γµλ · AµΨ. It describes the interaction between the quark fields Ψ and the gluons Aµ, thus it
describes the strong force.

The last step adds the necessary kinetic terms for the fields Aµ to the Lagrangian in order to let the gauge
fields propagate. Starting similar to the abelian case from the massless Proca Lagrangian 1

16πFµνF
µν

with Fµν = − i
g [Dµ, Dν ] the quantity Fµν becomes

− i
g

[Dµ, Dν ]Ψ = − i
g

(∂µ + igλ ·Aµ)(∂νΨ + igλ ·AνΨ) +
i

g
(∂ν + igλ ·Aν)(∂µΨ + igλ ·AµΨ)

= − i
g
∂µ∂νΨ +

i

g
∂ν∂µΨ + λ ·Aν∂µΨ + λ ·Aµ∂νΨ− λ ·Aν∂µΨ− λ ·Aµ∂νΨ

+ ∂µ(λ ·Aν)Ψ− ∂ν(λ ·Aµ)Ψ + ig(λ ·Aµ)(λ ·Aν)Ψ− ig(λ ·Aν)(λ ·Aµ)Ψ

such that Fµν = − i
g [Dµ, Dν ] = ∂µ(λ · Aν) − ∂ν(λ · Aµ) + ig[λ · Aµ, λ · Aν ]. Because it is a non-abelian

group, the commutators [λ · Aµ, λ · Aν ] do not vanish. The Lie algebra for SU(3) is [gi, gj ] = if ijkgk
where the values f ijk are the structure constants of SU(3). The quantities λ are the generators and one
can therefore write [λa, λb] = ifabcλc. The fact that the commutators [λ · Aµ, λ · Aν ] do not vanish has
nothing to do with the gauge fields Aµ but comes from the generators λ. Thus with

Fµν = ∂µ(λ ·Aν)− ∂ν(λ ·Aµ) + ig[λ ·Aµ, λ ·Aν ] = λa(∂µA
a
ν − ∂νAaµ)− gfabcλaAbµAcν

= λa
(
∂µA

a
ν − ∂νAaµ − gfabcAbµAcν

)
= λaF aµν

summing over a the kinetic term for the eight fields Aaµ becomes

1

16π
F aµνF

µν a =
1

16π

(
∂µA

a
ν − ∂νAaµ − gfabcAbµAcν

) (
∂µAν a − ∂νAµa − gfadeAµ dAν e

)
=

1

16π

(
∂µA

a
ν − ∂νAaµ

)
(∂µAν a − ∂νAµa) + gluon-gluon interactions

6Also the other three forces (electromagnetism, weak interaction, and gravity) have only one coupling constant each.
The coupling constant determines the strength of the force.
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where the gluon-gluon interactions which mix the eight gauge fields are

− g

16π
fadeAdµA

e
ν(∂µAν a − ∂νAµa)− g

16π
fabcAµ bAν c(∂µA

a
ν − ∂νAaµ) +

g2

16π
fabcfadeAbµA

c
νA

µ dAν e

in addition to the expected kinetic term 1
16π (∂µA

a
ν − ∂νAaµ)(∂µAν a − ∂νAµa) which actually consists of

eight terms for a ∈ {1, ..., 8} but does not mix the gauge fields. Note that the gluon-gluon interactions
critically depend on SU(3) being non-abelian such that fabc 6= 0. The photons in electromagnetism (6.1)
do not interact with each other because U(1) is abelian. The gluon-gluon interactions with three or four
gluons bring in a host of new effects including glueballs, confinement, and so on. Unlike the vacuum
in electromagnetism the vacuum in Quantum Chromodynamics is vary active because the gauge fields
interact heavily. To conclude this application of the recipe for gauge theories and to summarize,

L = ~cΨ̄γµDµΨ +mc2Ψ̄Ψ +
1

16π
(∂µA

a
ν − ∂νAaµ)(∂µAν a − ∂νAµa)

− g

16π
fadeAdµA

e
ν(∂µAν a − ∂νAµa)− g

16π
fabcAµ bAν c(∂µA

a
ν − ∂νAaµ)

+
g2

16π
fabcfadeAbµA

c
νA

µ dAν e

(6.2)

is the complete Lagrangian for Quantum Chromodynamics.

6.3 Electroweak Gauge Theory

The weak interactions have many peculiar features that sets them apart from the strong and the electro-
magnetic interactions:

i) Every single matter particle in the Standard Model exhibits weak interactions while only charged
particles feel the electromagnetic force and only quarks feel the strong force.

ii) The force mediators are massive unlike the massless photons and gluons.
iii) The weak interactions violate charge conjugation (C), parity (P), the combination of charge conju-

gation and parity (CP), and time (T).
iv) The weak interactions can change the flavor of the particles and are therefore responsible for decays.

Perhaps the strangest part of the weak interactions is that they are not realized as a symmetry of the
Standard Model, at least not at room temperature type energies. It is based on a symmetry that is
broken, and this is tied to the fact that the mediators are massive.

In order to use the recipe for gauge theories in line with electromagnetism and Quantum Chromodynamics,
one can formulate the weak interactions in terms of a gauge symmetry. This is relevant since at some
point in the history of the universe this is how it appeared. A surprising feature of formulating the weak
interactions in terms of a gauge symmetry is that this is not possible for the weak force alone but one is
forced to unify the weak force with electromagnetism to do so. This is called the electroweak unification.
One often hears that the total gauge group of the Standard Model is SU(3) × SU(2) ×U(1) where SU(3)
is Quantum Chromodynamics, SU(2) is the weak force, and U(1) is electromagnetism. This is not quite
right. The correct groups are SU(3) × SU(2)L × U(1)Y for high energy where L stands for left chirality
and Y for hypercharge, and SU(3) × U(1)EM for low energy where EM stands for electromagnetism. The
weak interactions cannot be observed as a manifestly realized symmetry group at low temperature, and
U(1)Y is not the same as U(1)EM. The group SU(3) is in both cases the symmetry group for Quantum
Chromodynamics, and SU(2)L×U(1)Y together is the symmetry group for the unified electroweak force.

Thus the starting point is therefore the symmetry group SU(2)L × U(1)Y which at some point in the
history of the universe has been broken. The free Dirac Lagrangian L = ~cΨ̄γµ∂µΨ + mc2Ψ̄Ψ is again
the Lagrangian used but Ψ is assumed to be in the form (5.9) as Weyl spinors Ψ±. The Dirac Lagrangian

becomes −~c(iΨ†−∂µσµΨ−+iΨ†+∂µσ̄
µΨ+)+mc2(Ψ†−Ψ++Ψ†+Ψ−) where σµ = (I,+σi) and σ̄µ = (I,−σi).

Note that the mass term mixes Ψ+ and Ψ−, but the other two terms do not.

In order to use consistently spinors with four components, the spinors ΨR and ΨL defined as

ΨR =

(
Ψ+

0

)
ΨL =

(
0

Ψ−

)
Ψ =

(
Ψ+

Ψ−

)
= ΨR + ΨL

31



are used instead of Ψ±. As shown above when introducing the matrix γ5 (5.10), the two projection
operators P± = 1

2 (I ± γ5) can be used to project an arbitrary four-component spinor Ψ onto the chiral
parts ΨR = P+Ψ and ΨL = P−Ψ. The matrix γ5 has the properties

γ52
= I γ5† = γ5 {γ5, γµ} = 0

used below. The Dirac Lagrangian becomes L = ~c(Ψ̄L+Ψ̄R)γµ∂µ(ΨL+ΨR)+mc2(Ψ̄L+Ψ̄R)(ΨL+ΨR).
Applying Ψ̄ = iΨ†γ0 on the spinor ΨR gives

Ψ̄R =
1

2
(I + γ5)Ψ = i(

1

2
(I+γ5)Ψ)†γ0 = iΨ†(

1

2
(I+γ5)†γ0 = iΨ†(

1

2
(I+γ5)γ0 = iΨ†γ0(

1

2
(I−γ5) = Ψ̄P−

such that Ψ̄R = Ψ̄P−. The cross terms in the Lagrangian which connect a left and a right projection
leading to expressions like Ψ̄Rγ

µΨL = Ψ̄P−γ
µP−Ψ = Ψ̄γµP+P−Ψ all disappear because after P− the

components to project for P+ are zero or, more formally, because 1
2 (I + γ5) 1

2 (I − γ5) = 1
4 (I − (γ5)2) = 0.

Similarly, terms like Ψ̄LΨL in the mass term also disappear because Ψ̄LΨL = Ψ̄P+P−Ψ = 0. Thus, in
the kinetic term of the Lagrangian only terms remain which are combinations of the same chirality, while
in the mass term only terms survive with different chirality. The Lagrangian becomes

L = ~cΨ̄Lγ
µ∂µΨL + ~cΨ̄Rγ

µ∂µΨR +mc2(Ψ̄LΨR + Ψ̄RΨL)

and looks similar to the Lagrangian with Weyl spinors but is here written in spinors with four components.
One can therefore not build a mass term with only left or only right contributions. (This will play a role
for the mass of neutrinos because one observes only left-handed neutrinos in nature, but right-handed
neutrinos would be needed for the neutrino to form a mass term.)

This Lagrangian is used in the following as the free Lagrangian for the electroweak interaction, and the
symmetry group is SU(2)L ×U(1)Y. In the case of Quantum Chromodynamic with the symmetry group
SU(3), triplets with the three components Ψr, Ψb, Ψg were needed to act on. Here doublets are needed
for SU(2)L to act on and singlets for U(1)Y to act on. The doublets are the left-handed flavor doublets

χL =

(
νe
e

)
L

,

(
νµ
µ

)
L

,

(
ντ
τ

)
L

,

(
u
d

)
L

,

(
c
s

)
L

,

(
t
b

)
L

containing two particles as components. A SU(2) matrix may therefore change a neutrino νe into an
electron e. The singlets are the right-handed singlets eR, µR, τR, uR, dR, cR, sR, tR, bR. At the time
the electroweak unification was worked on, there were no right-handed neutrinos in nature, neutrinos
had zero mass, and experimental observations supported that. All the other particles have mass, and
therefore there must be right-handed versions if there are left-handed versions. Each component of the
doublets and each singlet is described by a four-component spinor, but because they are either left-handed
or right-handed they will only have either the upper two or the lower two non-zero components. In order
to simplify the theory, only the doublet with the electron eL and the singlet eR will be explored because
the other doublets and singlets only differ by their mass. The quarks feel the strong interactions and the
leptons do not, but this is not relevant when talking about the electroweak interactions. This simplifies the
Langrangian to L = ~c χ̄Lγµ∂µχL + ~c ēRγµ∂µeR plus the mass term which can be ignored at this point
because it does not generate interaction terms. This Lagrangian is invariant under global SU(2)L×U(1)Y

where SU(2)L represents isospin and U(1)Y hypercharge and where the actual transformations are

SU(2)L : χL → χ′L = e−ig ~σ·
~θχL

U(1)Y : χL → χ′L = e−ig
′YχLφχL eR → e′R = e−ig

′YeRφeR

with g = q
~c and with the factors YχL and YeR to allow χL and eR to carry different amounts of the same

hypercharge governed by g′. The transformation for SU(2) which is isomorphic to SO(3) near the identity,
uses the Pauli matrices ~σ as generators (4.4) because rotations in three dimensions can be written as
complex 2 × 2 matrices expressed in the Pauli matrices. Here the symmetry group is SU(2) and is not
describing rotations but this weird transformation in flavor space. However, the group is the same SU(2),
and one should be able to write down the matrix elements of SU(2) using the same structure as used for
rotations in three dimensions. The transformations for U(1) is basically the same as for electromagnetism,
and is therefore just a phase.
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Each of these global symmetries can be promoted to a local symmetry of the Lagrangian by the same
method as used for Quantum Chromodynamics and electromagnetism by introducing

∂µχL → DµχL = ∂µχL + ig ~σ · ~WµχL + ig′YχLBµχL

∂µeR → DµeR = ∂µeR + ig′YeRBµeR

as covariant derivatives where ~Wµ are three gauge fields for SU(2)L and Bµ is one gauge field for U(1)Y.

The quantities ~θ and φ depend on Xµ for the localized symmetries. The gauge fields transform as

~σ · ~Wµ → ~σ · ~W ′µ = e−ig ~σ·
~θ ~σ · ~Wµ e

ig ~σ·~θ +
i

g
∂µ(e−ig ~σ·

~θ)eig ~σ·
~θ Bµ → B′µ = Bµ + ∂µφ

to make the covariant derivatives work as expected. As in Quantum Chromodynamics the SU(2) gauge
fields transform in a rather complicated way due to the fact that SU(2) is a non-abelian group.

A kinetic term is introduced for each gauge field using Fµν = − i
g [Dµ, Dν ] leading to

Fµν = ∂µBν − ∂νBµ F aµν = ∂µW
a
ν − ∂νW a

µ − gεabcW b
µW

c
ν

where εabc are the SU(3) and equally SU(2) Lie algebra structure constants (4.3). The terms ~WµχL
and BµχL in the definition of the covariant derivatives show that the gauge fields and the matter fields
interact, but the term W b

µW
c
ν in the kinetic terms show also that the three gauge fields W a

µ interact with
each other in the same way as the gluon fields do in Quantum Chromodynamics.

The three gauge bosons W 1
µ , W 2

µ , W 3
µ acting on the left-handed doublets have an interesting structure.

As usual in various areas of Quantum Mechanics one can think of the three gauge bosons in terms of the
basis W z

µ = W 3
µ and W±µ = 1

2 (W 1
µ ± iW 2

µ). This gives

W z
µ ∼

1

2
σ3 =

(
1
2 0
0 − 1

2

)
W+
µ ∼

1

2
(σ1 + iσ2) =

(
0 1
0 0

)
W−µ ∼

1

2
(σ1 − iσ2) =

(
0 0
1 0

)
as matrices in flavor space. These matrices acting on doublets result in

W z
µ

(
1
0

)
=

(
1
2 0
0 − 1

2

)(
1
0

)
=

1

2

(
1
0

)
W z
µ

(
0
1

)
=

(
1
2 0
0 − 1

2

)(
0
1

)
= −1

2

(
0
1

)
W+
µ

(
1
0

)
=

(
0 1
0 0

)(
1
0

)
=

(
0
0

)
W+
µ

(
0
1

)
=

(
0 1
0 0

)(
0
1

)
=

(
1
0

)
W−µ

(
1
0

)
=

(
0 0
1 0

)(
1
0

)
=

(
0
1

)
W−µ

(
0
1

)
=

(
0 0
1 0

)(
0
1

)
=

(
0
0

)
on neutrinos on the left side and on electrons on the right side. Thus, W+

µ turns a neutrino νe into an
electron e and therefore has to add electric charge, and W−µ turns an electron e into a neutrino νe and
has to remove electric charge. The signs ± given to W+

µ and W−µ are correlated with electric charge.
These gauge bosons mediate interactions which change the electric charge of the matter involved. The
W z
µ on the other hand does not change the particle flavor, hence does not change the electric charge

and is electrically neutral. In other words, there is a neutral boson W 0 = W z leaving electrical charge
unchanged and two electrically charged bosons W± changing electrical charge.

There are two big problems with the electroweak unification:

1) The weak gauge bosons are massive, but W a
µW

µa in the Proca mass term is not gauge invariant.
2) The mass term for spinors requires both the left and the right parts of Ψ to combine, but the gauge

theory for the electroweak interaction transforms the left and the right parts differently.

In other words, neither the electroweak gauge bosons nor the fermions constituting matter can have mass.
The electroweak symmetry with SU(2) was dropped for ten years because there was no way to reconcile it
with massive gauge bosons until a group of scientists including Peter Higgs showed how it can be saved.

Both problems will be solved with the Higgs mechanism for mass generation. A crucial part of this
process is the breaking of SU(2)L×U(1)Y → U(1)EM. Early in the universe everything was massless and
SU(2)L × U(1)Y was a symmetry of the Standard Model. As the universe cooled this symmetry group
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underwent a process called spontaneous symmetry breaking down to U(1)EM. In this process three of the
bosons gained mass together with the matter particles. It is not the case that SU(2)L × U(1)Y with the
four generators W z

µ , W±µ , Bµ became U(1)EM with one symmetry generator Bµ as one might expect, but
this is not the case. What happened is that the Bµ from U(1)Y mixes with the neutral W z

µ from SU(2)L

Aµ = Bµ cos θW +W z
µ sin θW Z0

µ = −Bµ sin θW +W z
µ cos θW

where θW is the Weinberg mixing angle which can be measured. The linear combination Aµ has no mass
and is the photon of electromagnetism, while the linear combination Z0

µ has mass and is the neutral boson
of the broken weak interaction together with the two electrically charged W±µ gauge bosons.

In the unified gauge group SU(2)L × U(1)Y it would not make much sense to call this a unified group if
the two factors SU(2)L and U(1)Y have completely independent coupling constants g and g′. They are
related by g sin θW = g′ cos θW but in the broken version of the theory it is more useful to know how the
couplings to W±, Z0 and γ are related. It turns out that

gγ = g sin θW = g′ cos θW gW± = g gZ0 =
gγ

sin θW cos θW
=

g

cos θW
=

g′

sin θW
(6.3)

are these relations. The relation gW± = g is not surprising because these two gauge fields come from the
unbroken symmetry group basically unchanged and just gained mass through the process of symmetry
breaking while γ and Z0 got mixed up with gauge fields of both factors of the unbroken symmetry group.
Finally, note that given θW and either g or g′, all the other numbers in (6.3) can be calculated.

6.4 Field View of the Higgs Mechanism

When localizing any symmetry in the steps to build a gauge theory, the spin-1 gauge fields introduced
in the covariant derivative cannot have a non-zero mass term in the Proca Lagrangian. Because the
weak interactions transform left-handed fermions differently from right-handed fermions, the mass term
mc2(Ψ̄RΨL+Ψ̄LΨR) in the Dirac Lagrangian cannot be invariant under SU(2)L×U(1)Y. In other words,
neither the gauge bosons Z0 and W± nor all the fermions can have mass. Since these particles have mass,
the question is where they get the mass from. It is not allowed to put the mass in, but there is no problem
if the masses just pop up.

The Higgs mechanism in the context of the weak interaction is very difficult, and it is therefore shown
here in a simplified context based on U(1) instead of the much nastier real case for SU(2)L × U(1)Y.
The starting point is the Lagrangian Φ is L = 1

2 (∂µΦ)∗(∂µΦ) for a complex scalar field Φ = Φ1 + iΦ2.
Instead of a mass term which is a quadratic interaction of the field with itself the Lagrangian becomes
L = 1

2 (∂µΦ)∗(∂µΦ) − 1
2µ

2Φ∗Φ + 1
4λ

2(Φ∗Φ)2 where the first term added to the spin-0 kinetic term is a
kind of mass term with the wrong sign and the second term added is a quartic self-interaction. The
strength of the two terms is controlled by µ and λ. These two self-interaction terms together are called
the potential U(Φ,Φ∗) giving L = 1

2 (∂µΦ)∗(∂µΦ) + U(Φ,Φ∗). The wrong sign mass term interpreted as
mass means that negative mass squared or E2/c2 − p2 < 0. A particle with c2 < v2 is called a tachyon,
but since Φ is a field there is a more sensible way to interpret this fact in field theory.

The Lagrangian with the two self-interaction terms has a global U(1) symmetry such that Φ→ eiθΦ and
Φ∗ → e−iθΦ∗. By localizing this symmetry to Φ′ = eiθ(X)Φ and the covariant derivative Dµ = ∂µ+i q~cAµ
the gauge field Aµ transforms as Aµ → A′µ = Aµ − q

~c∂µθ. In the last step a kinetic term is added to the
Lagrangian for the gauge field such that it becomes

L(Φ,Φ∗, Aµ) =
1

2

[(
∂µ −

iq

~c
Aµ

)
Φ∗
] [(

∂µ +
iq

~c
Aµ
)

Φ

]
− 1

2
µ2Φ∗Φ +

1

4
λ2(Φ∗Φ)2 +

1

16π
FµνFµν (6.4)

with Fµν = ∂µAν − ∂νAµ. This gives a gauge theory with a massless gauge field.

When working in Particle Physics one is interested in the tiny fluctuations of the fields which are the
observable particles. The theory developed here has the three fields Φ, Φ∗ and Aµ where Φ = Φ1 + iΦ2,
and one can either take Φ1 and Φ2 or Φ and Φ∗ as the independent fields. All three fields can be written
as Aµ = Aµ0 + δAµ, Φ = Φ0 + δΦ, Φ∗ = Φ∗0 + δΦ∗ where the terms with the δ represent the tiny
fluctuations corresponding to observable particles. One gets the background field configurations Aµ0, Φ0,

34



Φ∗0 from solving the equations of motion for the Lagrangian L(Φ,Φ∗, Aµ) classically and treats the small
fluctuations afterwards quantum mechanically.

To solve the equations of motion of the Lagrangian L(Φ,Φ∗, Aµ) for the simplest possible solutions one can
look for constant field configurations where all the terms with derivatives automatically vanish. Looking
for constant solutions boils down to setting the derivative of the potential function U(Φ,Φ∗) with respect
to Φ or Φ∗ to zero. This gives

∂U(Φ,Φ∗)

∂Φ∗
= −1

2
µ2Φ +

1

2
λ2|Φ|2Φ = 0

with the following solutions:

i) One solution is Aµ = 0 and Φ = 0 leading to Aµ = 0 + δAµ and Φ = 0 + δΦ. This is not a very
interesting solution because plugging Aµ = 0+δAµ and Φ = 0+δΦ into the Lagrangian L(Φ,Φ∗, Aµ)
gives the same Lagrangian but with Aµ → δAµ, Φ→ δΦ, Φ∗ → δΦ∗.

ii) Another less trivial solution is Aµ = 0 and Φ = Φ0 where Φ0 satisfies |Φ|2 = µ2

λ2 . The specific choice
Φ10 = µ

λ and Φ20 = 0 is made here for Φ and leads to Aµ = 0 + δAµ, Φ1 = µ
λ + δΦ1, Φ2 = 0 + δΦ2

which gives an interesting solution to be studied further.

Plugging Aµ = 0+δAµ ≡ Aµ, Φ1 = µ
λ +δΦ1 ≡ µ

λ +η, Φ2 = 0+δΦ2 ≡ β into the Lagrangian L(Φ,Φ∗, Aµ)
gives

L =
[1

2
(∂µη)(∂µη) + µ2η2

]
+
[1

2
(∂µβ)(∂µβ)

]
+
[ 1

16π
FµνFµν +

1

2

( q
~c
µ

λ

)2

AµA
µ
]

+
{ q

~c
[
η(∂µβ)− β(∂µη)

]
Aµ +

µ

λ

( q
~c

)2

η(AµA
µ) +

1

2

( q
~c

)2(
β2 + η2

)
AµA

µ

+ λµ
(
η3 + ηβ2

)
+

1

4
λ2
(
η4 + 2η2β2 + β4

)}
+
(µ
λ

q

~c

)
(∂µβ)Aµ −

(µ2

2λ

)2

(6.5)

where the fields Aµ, η and β depend on position. (Note that this is a simplified version and not the real
version for the electroweak force which is even more complicated.) This Lagrangian describes these three
fields with the properties:

• The term describing η is 1
2 (∂µη)(∂µη) + µ2η2 in Klein-Gordon form, and mη =

√
2~
cµ is therefore

the mass of the scalar field η.
• The term describing β is 1

2 (∂µβ)(∂µβ) also in Klein-Gordon form but without mass term, and the
scalar field β is therefore massless.

• The term 1
2 ( q~c

µ
λ )2AµA

µ gives the gauge field Aµ the mass mA = 2
√
π qµ
λc2 .

• All three fields are interacting with each other in complicated ways.

The mass for the gauge field has not been put in by hand but it came from looking at a particular
background of the field Φ. If µ

λ would not have been there, the gauge field would not have mass. The
complex field Φ is called the Higgs field.

6.5 Symmetry Breaking View of the Higgs Mechanism

It is possible for a physical theory to have a symmetry even though the experience of
this physical theory does not reflect that symmetry. As an example a scalar field Φ with
the Lagrangian 1

2∂µΦ∂µΦ− V (Φ) is used where the potential is V (Φ) = − 1
2Φ2 + 1

4Φ4.
The field is real such that Φ(Xµ) has one degree of freedom, and the extrema are a
maximum at Φ = 0 and two minima at Φ = ±1 if the field is constant. The potential
is an even function in Φ whose graph has therefore the symmetry V (−Φ) = V (Φ).
It becomes the same when mirrored at the axis Φ = 0. However, through this mirroring process the
solution Φ = 0 stays the same while the two solutions Φ = ±1 are exchanged. In perturbative physics
one does not think about the whole field configuration but more about small fluctuations. One starts
with a solution Φ0 of the classical equation and perturb in small fluctuations about that solution such
that one gets Φ(X) = Φ0 + δΦ(X). Putting this into the Lagrangian gives

L(δΦ) = ∂µ(Φ0 + δΦ)∂µ(Φ0 + δΦ) + 1
2 (Φ0 + δΦ)2 − 1

4 (Φ0 + δΦ)4

= ∂µδΦ∂
µδΦ + 1

2 (Φ0 + δΦ)2 − 1
4 (Φ0 + δΦ)4
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where Φ0 is one of the three static solutions 0 and ±1. Thus, one can look at different Φ0 and gets

L0 = ∂µδΦ∂
µδΦ + 1

2δΦ
2 − 1

4δΦ
4

L+1 = ∂µδΦ∂
µδΦ + 1

2 (1 + δΦ)2 − 1
4 (1 + δΦ)4

for Φ0 = 0 and Φ0 = +1.

The Lagrangian L0 is the same as the Lagrangian for Φ
and has the same symmetry because L0(δΦ) = L0(−δΦ)
is still valid. The Lagrangian L+1, however, is no longer
symmetric because L+1(δΦ) 6= L+1(−δΦ). The symme-
try is said to be broken. Because Φ = 0 is not changed
by Φ→ −Φ, but Φ = ±1 is, the fluctuations about these solutions reflect these different situations. Note
that the given potential in both cases is symmetric. The underlying physics is defined by the symmetric
potential, but the experience of physics is determined by the small fluctuations. This is the context in
which one can say that there is a symmetry but this symmetry has in some sense been broken. It is still
there but one does not see it manifestly.

The Higgs field with the Lagrangian (6.4) is a complex field, and U(Φ) = − 1
2µ

2Φ∗Φ + 1
4λ

2(Φ∗Φ)2 is
the potential. This is similar to the above example showing how a symmetry can look broken, but
the symmetry in the Higgs field is continuous and not discrete as in the example. The Lagrangian for
the solution Φ = 0 and Aµ = 0 had turned out to have the same symmetry properties as the original
Lagrangian, but the solution Φ1 = µ

λ , Φ2 = 0 and Aµ = 0 with the fluctuations δΦ1 = η, δΦ2 = β and
δAµ = Aµ resulted in the Lagrangian (6.5) with the term 1

2 (∂µη)(∂µη) +µ2η2 for the massive scalar field
η, the term 1

2 (∂µβ)(∂µβ) for the massless scalar field β, the term 1
16πF

µνFµν + 1
2 ( q~c

µ
λ )2AµA

µ for the
massive vector field Aµ, and with various interaction terms. This also broke a symmetry but a continuous
symmetry.

Figure 6.1: The Higgs potential in the form of a Mexican hat

The potential U(Φ) = − 1
2µ

2Φ∗Φ + 1
4λ

2(Φ∗Φ)2 shown in figure 6.1 is commonly called a “Mexican hat”
potential, and it looks similar to the broken symmetry example above but the symmetry is now a rotation
on a unit circle in the complex plane. There is an obvious maximum at Φ = 0 analogously to the broken
symmetry example, but the minima are the circle |Φ|2 = µ2/λ2 building a continuous set of solutions
and not just the two discrete points Φ = ±1. These solutions are illustrated in (a). The specific solution
Φ1 = µ

λ and Φ2 = 0 is presented in (b) with the two fluctuation fields η and β drawn as arrows. The
fluctuations η of Φ1 move up and down the sides of the valley (along the Φ1-axis), while the fluctuations
β of Φ2 move along the valley on the flat circle of the potential minima. (Note that instead of the point

Φ1 = µ/λ any other point on the circle with |Φ|2 = µ2/λ2 could have been chosen.)

There is a significance for the fact that η moves up and down while β moves on a flat curve. The mass
term is quadratic in the field itself and there is no other field involved. One way to figure out what
mass term might result from a potential is to look at the second derivative d2U(Φ)/dΦ2|Φ=Φ0

. Given the
Lagrangian L = 1

2∂µΦ∂µΦ + V (Φ) where the potential is something like V (Φ) = eiaΦ it is not obvious
that this field has a mass but expanded to the power series A+B(Φ−Φ0)+C(Φ−Φ0)2 +D(Φ−Φ0)3 + ...
the second derivative is d2U(Φ)/dΦ2|Φ=Φ0

= 2C. This is the mass term, and mass is nothing other
than the quadratic interaction of the field with itself. In other words, concavity which is what governs
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the quadratic term (the second derivative) determines the mass squared. The fluctuations in η have
positive mass squared, the fluctuations in β have zero mass squared, and a fluctuation about Φ = 0
has negative mass squared. Negative mass squared just shows an instability, and fluctuating just means
rolling away from the starting point. In a field-theory context, massive or massless fluctuations imply
stability and tachyonic fluctuations imply instability. Physics without any particles is called a vacuum,
and the solutions studied here are different vacua. The solution Φ = 0 is unstable, and as soon as a
particle exists it will flow down into the valley. The set of solutions |Φ|2 = µ2/λ2 on the other hand is a
circle of stable vacua.

In the above discussion of the Higgs mechanism U(1) has been used instead of the real electroweak
symmetry because it makes the calculations as well as the visualization easier. This means that the
symmetry is Φ → eiθΦ. But the fields are now η and β. Thus, the original gauge symmetry becomes a
shift of β. It is not a multiplication by a complex number because β is a real scalar field now, but it is
a shift β → β + δβ. A gauge transformation does not change the physical results. In electromagnetism
one talks about the electromagnetic fields E and B because they are the physical reality while one can
always change the potentials by a gauge transformation. Thus, there is this massless scalar field β that
can fluctuate but one is free to change the value of β using β → β+δβ back to what it was before without
changing the physical content of the theory. That means if β makes a fluctuation +1, for example, one
can always set it back to zero by such a shift, and one can therefore gauge away any fluctuations of β.
These are non-physical fluctuations. Thus, one loses the massless field β by setting it to zero and keeps
only the massive scalar field η and the massive gauge field Aµ.

Summarizing, the Mexican hat potential is the Higgs potential, Φ is the Higgs field, η is the massive
Higgs boson, and β is a massless Goldstone boson. The Higgs boson has been detected experimentally,
and Goldstone bosons always appear if there is a continuous symmetry. The Higgs mechanism gives
mass to the gauge fields Aµ of a spontaneously broken gauge symmetry through the coupling to an extra
Higgs field Φ which has its own particle η. The two-polarization massless spin-1 field Aµ eats – as it
is formulated – the spin-0 Goldstone boson β to get its third polarization degree of freedom which is
required when the mass of the gauge field is not zero. One loses one real degree of freedom because β
can be gauged away, but one gains one real degree of freedom with the mass for the gauge field Aµ.

The Higgs mechanism has been illustrated with the simplest possible symmetry group U(1) but can be
generalized to the breaking of SU(2)L × U(1)Y → U(1)EM which explains the masses of the W± and Z0

bosons in the Standard Model. However, not only the gauge bosons are supposed to be massless because
of the process for building a gauge theory but also the fundamental matter fermions are taken to be
massless for SU(2)L invariance. By coupling one can generate effective masses for these as well. One can
include a term ΦΨ̄LΨR, but this is an interaction of the Higgs field Φ with the fermion field Ψ and not
a mass term. The mass term gets created through Φ → Φ0 + δΦ and Φ0Ψ̄LΨR + δΦΨ̄LΨR. The term
Φ0Ψ̄LΨR is a mass term because Φ0 is a constant. Thus the Higgs mechanism solves both mass problems.

6.6 Evolution of the Higgs Potential

The question remains how the Higgs field got into the unstable solution. The factors µ and λ in the
Higgs potential are coupling constants similar to the electric charge which is the coupling constant for
electromagnetism. It turned out that coupling constants are not constant. The charge of an electron
is not a constant. For all practical purposes it is constant because one actually never does experiments
in electromagnetism that get close enough to a charged particle to see a difference. If one probes closer
and closer to an elementary particle which takes higher and higher energies one would discover that the
values of charges change. All couplings vary with energy scales.

Thus, changing the factors µ and λ in U(Φ) = − 1
2µ

2Φ∗Φ+ 1
4λ

2(Φ∗Φ)2 changes the shape of the potential.
Maybe they change sign. One can imagine that early in the universe when the universe was very hot and
everything was highly energetic there was only one solution Φ = 0 and it was stable. But as the universe
cooled everything dropped to lower energy densities such that the Higgs potential eventually could have
taken the form it has today where the solution Φ = 0 became unstable and is no longer the only solution.
The Higgs field could no longer stay at Φ = 0 and rolled down. It had to go somewhere on the circle
of the new continuous set of solutions, but the direction was completely arbitrary. Wherever it went is
where it is today, but it was completely undetermined. It was spontaneous what direction it picked to
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go. Early in the universe there was a stable vacuum with Φ = 0 and what happened later was a so-called
vacuum decay into one of the vacua at |Φ|2 = µ2/λ2.

Figure 6.2: Evolution of the Higgs potential in the history of the universe

The way that the Higgs potential could have evolved over the history of the universe is depicted in
figure 6.2. In an early stage (a) the lowest energy solution was symmetric → SU(2)L × U(1)Y. In a
later stage (b) it was still symmetric → SU(2)L ×U(1)Y. In the last stage (c) however the lowest energy
solutions have broken symmetry → U(1)EM.

Spontaneous symmetry breaking is a known phenomenon in physics. Given a lattice
of spins (magnetic dipols, for example) where spins tend to align or anti-align, these
spins wiggle randomly at high temperatures. When lowering the temperature more and
more the shaking of the spins becomes eventually so slow that they start to align. Two
neighbors align and start building a domain and the direction is completely random.
Picking the direction was completely spontaneous. The unaligned state of the system
was more symmetric and enjoys a full SO(3) invariance. If it is completely random, one
can rotate it arbitrarily and it looks the same. As soon as the system is cooled down
enough to create alignment, there is only a SO(2) invariance. One can rotate the system
about the plane perpendicular to the direction of the alignment. This is spontaneous
symmetry breaking. If one takes a field approximation of this system, then one can describe the physics
of this system with a Higgs mechanism because the Higgs mechanism is not only useful in Particle Physics
but also in condensed matter physics describing phase transitions.

Because the universe is so large that if the Higgs field takes a value in one place another region may be
causally disconnected because communication is limited by the speed of light. Thus, if the whole Higgs
mechanism takes place over a short enough time frame then there is no reason why the alignment in one
place should be the same as in another place, and one might end up just like in magnetic materials with
domain walls. In the case of magnetism one understands the domain walls. In the context of breaking a
gauge symmetry, it has been discovered that these domain walls give rise to magnetic monopoles because
magnetic monopoles are nothing but topologically non-trivial configurations of the gauge field.
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