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Abstract

The video channel with the title “Professor M does Science” in YouTube offers a simple step-
by-step but all the same very valuable and rigorous introduction into the world of quantum physics.
This script covers the calculus of wave functions and helps to digest the topic covered by a group of
those videos but is not meant as a replacement for them.

3 The Calculus of Wave Functions in Quantum Mechanics

3.1 Wave Functions

A wave function is one of the possible ways to look at a quantum system. It is the so-called position
representation of quantum mechanics. This representation is useful when examining system is the three-
dimensional space including potential barriers.

The position operator x̂ with the eigenvalue equation x̂ |x〉 = x |x〉 and the momentum operator p̂ with
the eigenvalue equation p̂ |p〉 = p |p〉 satisfy the commutation relation [x̂, p̂] = i ~. The position eigenstates
|x〉 form an orthonormal basis such that 〈x|x′〉 = δ(x − x′), and any state can therefore be represented
as |ψ〉 =

∫
dx 〈x|ψ〉 |x〉. The wave function is defined as ψ(x) = 〈x|ψ〉 in the basis of the eigenstates of

the position operator. Wave functions are fundamental in quantum mechanics and form the formulation
called wave mechanics. Similarly, the momentum eigenstates |p〉 form an orthonormal basis such that
〈p|p′〉 = δ(p− p′), and any state can therefore be represented as |ψ〉 =

∫
dp 〈p|ψ〉 |p〉. The wave function

in momentum space is ψ̄(p) = 〈p|ψ〉.

The scalar product of |ψ〉 =
∫
dx 〈x|ψ〉 |x〉 and |ϕ〉 =

∫
dy 〈y|ϕ〉 |y〉 is

〈ψ|ϕ〉 =

(∫
dx 〈ψ|x〉 |x〉

)(∫
dy 〈y|ϕ〉 |y〉

)
=

∫
dx

∫
dy 〈ψ|x〉 〈y|ϕ〉 〈x|y〉

=

∫
dx

∫
dy ψ∗(x)ϕ(y) δ(x− y) =

∫
dxψ∗(x)ϕ(x)

and this is the usual scalar product between two wave functions but has been developed from the scalar
product for states. The norm is

〈ψ|ψ〉 =

∫
dxψ∗(x)ψ(x) =

∫
dx |ψ(x)|2

and a wave function ψ(x) is normalized if 〈ψ|ψ〉 = 1. Scalar product and norm are similarly defined in
momentum space for a wave function ψ̄(p).

Switching from the representation in position space with basis {|x〉} to the representation in momentum
space with basis {|p〉} is done using the overlap matrix 〈x|p〉. The translation operator is needed in the
form for an infinitesimal amount ε

T̂ (−ε) = ei ε p̂/~ = I +
i ε

~
p̂+O(ε2)
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together with the properties T̂ (α) |x〉 = |x+ α〉 and 〈x| T̂ (α) = 〈x− α|. The derivation

〈x+ ε|p〉 = 〈x|T̂ (−ε)|p〉 = 〈x|
(
I +

i ε

~
p̂+O(ε2)

)
|p〉 = 〈x|p〉+

i ε

~
〈x|p̂|p〉+O(ε2)

= 〈x|p〉+
i ε

~
p 〈x|p〉+O(ε2)

leads to

p 〈x|p〉 = −i ~ lim
ε→0

(
〈x+ ε|p〉 − 〈x|p〉

ε

)
= −i ~ d

dx
〈x|p〉 ⇒ d 〈x|p〉

〈x|p〉
=
i

~
p dx

and ln(〈x|p〉) = i
~ p x+ c and further by integration to

〈x|p〉 = N ei p x/~

where N = ec still has to be determined. Using 〈x|x′〉 = δ(x− x′) in

〈x|x′〉 = 〈x|I|x′〉 = 〈x|
(∫

dp |p〉〈p|
)
|x′〉 =

∫
dp 〈x|p〉 〈p|x′〉 = |N |2

∫
dp ei p (x−x

′)/~

= |N |2 2π ~ δ(x− x′) = δ(x− x′)

and using one of the possible definitions of a delta function

δ(x− x′) =
1

2π

∫
du ei u(x−x

′)

with u = p/~ gives |N |2 = 1
2π ~ and therefore

〈x|p〉 =
1√
2π ~

ei p x/~

is the scalar product of an eigenstate in position space and an eigenstate in momentum space. Again
inserting I into 〈p|ψ〉 = ψ̄(p) and similarly in the other direction leads to

ψ̄(p) = 〈p|ψ〉 =
1√
2π ~

∫
dx e−i p x/~ ψ(x) ψ(x) = 〈x|ψ〉 =

1√
2π ~

∫
dp ei p x/~ ψ̄(p) (3.1)

showing that switching from position space to momentum space and vice versa uses the Fourier transform.

In three dimensions with x̂ = (x̂1, x̂2, x̂3) and p̂ = (p̂1, p̂2, p̂3) the commutation relations generalize to
[x̂j , p̂k] = i ~ δjk. The eigenvalue equation can be written as x̂ |x〉 = x |x〉 and the other equations can be
adapted similarly. The Fourier transform generalizes to

ψ(x) =
1

(2π ~)3/2

∫
dp ei p·x/~ ψ̄(p)

and analogously for ψ̄(p).

Wave functions are therefore simply a particular representation in the more general framework of state
vectors. Wave mechanics can be embedded into quantum mechanics in a state space, and wave functions
are states in the continuous basis of position or momentum.

3.2 Action of the Position and Momentum Operator on Wave Functions

The position operator x̂ acts by multiplying the wave function by x and the momentum operator p̂ acts
on the wave function by calculating the derivative. This is shown here.

Using the fact that 〈x|ψ〉 = ψ(x) is the wave function and that the action of x̂ on |ψ〉 gives another state
x̂ |ψ〉 = |ψ′〉 together with the eigenvalue equation x̂ |x〉 = x |x〉 gives

ψ′(x) = 〈x|ψ′〉 = 〈x|x̂|ψ〉 = x 〈x|ψ〉 = xψ(x)
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and this implies that the action of the position operator in terms of wave functions is simply multiplication
by x. Similarly, for |ψ′〉 = p̂ |ψ〉 is

ψ̄′(p) = 〈p|ψ′〉 = 〈p|p̂|ψ〉 = p 〈p|ψ〉 = p ψ̄(p)

the action of the momentum operator. Thus, the action of the position operator in its own basis is very
simple, and the action of the momentum operator in its own basis is also very simple.

The action of the momentum operator in the position basis and vice versa is harder. With 〈x|ψ〉 = ψ(x)
and |ψ′〉 = p̂ |ψ〉 the value of 〈x|p̂|ψ〉 has to be determined. To do so one can start from the translation
operator to get

ψ(x+ ε) = 〈x+ ε|ψ〉 = 〈x|T̂ (−ε)|ψ〉 = 〈x|
(
I +

i ε

~
p̂+O(ε2)

)
|ψ〉 = 〈x|ψ〉+

i ε

~
〈x|p̂|ψ〉+O(ε2)

= ψ(x) +
i ε

~
〈x|p̂|ψ〉+O(ε2)

and to get further

〈x|p̂|ψ〉 = −i ~ lim
ε→0

(
ψ(x+ ε)− ψ(x)

ε

)
= −i ~ dψ(x)

dx

showing that the action of the momentum operator p̂ on |ψ〉 when written in the position representation
means a derivative on the wave function multiplied by −i ~.

To get the action of the position operator in the momentum basis one can use the Fourier transforma-
tion (3.1) and start from |ψ′〉 = x̂ |ψ〉 with

ψ̄′(p) = 〈p|ψ′〉 ψ̄(p) = 〈p|ψ〉 ψ′(x) = 〈x|ψ′〉 ψ(x) = 〈x|ψ〉

to get

ψ̄′(p) =
1√
2π ~

∫
dx e−i p x/~ ψ′(x) =

1√
2π ~

∫
dx e−i p x/~ xψ(x)

using ψ′(x) = xψ(x) from above. Because of

d

dp

(
e−i p x/~ ψ(x)

)
= − i x

~
e−i p x/~

one can write

ψ̄′(p) = i ~
d

dp

[
1√
2π ~

∫
dx e−i p x/~ ψ(x)

]
= i ~

dψ̄(p)

dp

showing that the action of the position operator in the momentum basis is the derivative times i ~.

These results can be transferred to the three-dimensional space. In the position representation on one
hand where the wave function is ψ(x) = 〈x|ψ〉, the position operator x̂ simply multiplies the wave function
by x giving xψ(x) and the momentum operator p̂ acts as −i ~∇x ψ(x). In the momentum representation

where ψ̄(p) = 〈p|ψ〉, the action of the position operator x̂ calculates the gradient ∇p with respect to p as

i ~∇p ψ̄(p), and the momentum operator p̂ simply multiplies the wave function by p.

3.3 Parity Operator

The parity operator describes the reflection about the origin. In one dimensions, for example, it reflects
a wave function ψ(x) to ψ(-x). Therefore, it is also called the space inversion operator. It is useful in
problems with inversion symmetry such as the infinite square well. From the fundamental interactions
the electromagnetic and the strong nuclear force are symmetric under parity. Only the weak nuclear force
breaks parity.
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The parity operator π̂ acts on a position eigenstate |x〉 as π̂ |x〉 = |-x〉. Given this definition the action of
the parity operator can be extended to any state represented in the position representation. The parity
operator acting on a momentum eigenstate |p〉, for example, gives

π̂ |p〉 = π̂

(
1

(2π ~)3/2

∫
dx ei p·x/~ |x〉

)
=

1

(2π ~)3/2

∫
dx ei p·x/~ π̂ |x〉 =

1

(2π ~)3/2

∫
dx′ ei (−p)·x

′/~ |x′〉

= |-p〉

where x′ = -x. Note that
∫
d(-x′) =

∫
dx′ because of integration over the whole space. This shows that

the parity operator acts on position and momentum eigenstates in the same way. It simple reflects both
quantities about the origin.

In order to determine the action of the parity operator on an arbitrary state |ψ〉 the state is represented
in the position representation as

|ψ〉 =

∫
dxψ(x) |x〉

where ψ(x) = 〈x|ψ〉 is the wave function. The action of the parity operator is

π̂ |ψ〉 = π̂

∫
dxψ(x) |x〉 =

∫
dxψ(x)π̂ |x〉 =

∫
dxψ(x) |-x〉

and it is convenient to see what this new state looks like

〈x|π̂|ψ〉 = 〈x|
∫
dx′ ψ(x′)|-x′〉 =

∫
dx′ ψ(x′) 〈x |-x′〉 =

∫
dx′ ψ(x′)δ(x− (-x′)) = ψ(-x)

in the position representation. Thus, the parity operator reflects the wave function about the origin. The
same is true in the momentum representation.

The parity operator is involutory π̂ = π̂−1 because π̂2 |x〉 = |x〉 ⇒ π̂2 = I, and it is also Hermitian π̂ = π̂†

because its definition π̂ |x〉 = |-x〉 is 〈x| π̂† = 〈-x| in dual space and

〈y|π̂|x〉 = 〈y|-x〉 = δ(y − (-x)) = δ(x+ y) 〈y|π̂†|x〉 = 〈-y|x〉 = δ(-y − x) = δ(x+ y)

using the fact that the delta function is an even function. It follows that it is also unitary π̂−1 = π̂†.

The eigenvalues and eigenstates follow from the eigenvalue equation π̂ |λ〉 = λ |λ〉 and π̂2 = I with

|λ〉 = I |λ〉 = π̂2 |λ〉 = λπ̂ |λ〉 = λ2 |λ〉

such that λ2 = 1 and λ = ±1. This was to be expected because the eigenvalues of Hermitian operators
are real numbers and the eigenvalues of unitary operators satisfy |λ|2 = 1. The eigenstate associated with
λ = +1 is called |ψ+〉 and the eigenstate associated with λ = −1 is called |ψ−〉 such that the eigenvalue
equation for the parity operator becomes π̂ |ψ±〉 = ± |ψ±〉. The eigenstate |ψ+〉 is called even, and the
eigenstate |ψ−〉 is called odd, and even or odd states are said to have definite parity. The position and
momentum eigenstates do not satisfy the eigenvalue equation of the parity operator and are therefore
not eigenstates.

In terms of wave functions this eigenvalue equation means

π̂ |ψ+〉 = + |ψ+〉 ⇒ 〈x|π̂|ψ+〉 = + 〈x|ψ+〉 ⇒ ψ+(-x) = +ψ+(x)

π̂ |ψ−〉 = − |ψ−〉 ⇒ 〈x|π̂|ψ−〉 = −〈x|ψ−〉 ⇒ ψ−(-x) = −ψ−(x)

and the even eigenstates give even wave functions ψ+(-x) = +ψ+(x) while odd eigenstates give odd wave
functions ψ−(-x) = −ψ−(x).

To show that the two operators P̂+ = 1
2 (I + π̂) and P̂− = 1

2 (I − π̂) are projection operators one has to
show that they are idempotent. This follows from

P̂ 2
+ =

1

4
(I + π̂)(I + π̂) =

1

4
(I + π̂ + π̂ + π̂2) =

1

2
(I + π̂) = P̂+

P̂ 2
− =

1

4
(I− π̂)(I− π̂) =

1

4
(I− π̂ − π̂ + π̂2) =

1

2
(I− π̂) = P̂−
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using the fact that π̂2 = I. The product P̂+P̂− is

P̂+P̂− =
1

4
(I + π̂)(I− π̂) =

1

4
(I + π̂ − π̂ − π̂2) = 0

showing that these two operators project on orthogonal subspaces. Further, the sum of the two operators
due to

P̂+ + P̂− =
1

2
(I + π̂) +

1

2
(I− π̂) = I

project on complementary subspaces. These two operators project onto eigenstates of the parity operator
as

π̂(P̂+ |ψ〉) = π̂
1

2
(I + π̂) |ψ〉 =

1

2
(π̂ + π̂2) |ψ〉 =

1

2
(π̂ + I) |ψ〉 = P̂+ |ψ〉 ⇒ P̂+ |ψ〉 = |ψ+〉

π̂(P̂− |ψ〉) = π̂
1

2
(I− π̂) |ψ〉 =

1

2
(π̂ − π̂2) |ψ〉 =

1

2
(π̂ − I) |ψ〉 = -P̂− |ψ〉 ⇒ P̂− |ψ〉 = |ψ−〉

proves. Finally, any state |ψ〉 can be written as the sum of an even and an odd state as

|ψ〉 = I |ψ〉 = (P̂+ + P̂−) |ψ〉 = P̂+ |ψ〉+ P̂− |ψ〉 = |ψ+〉+ |ψ−〉

shows.

3.4 Even and Odd Operators

Even operators are the operators that commute with the parity operator, and odd operators anticommute
with the parity operator. Since many Hamiltonians are even the eigenstates for an even Hamiltonian
must be even or odd states, and this fact simplifies many calculations.

An even operator Â+ is defined by [Â+, π̂] = 0. An equivalent alternative definition for an even operator
is Â+ = π̂Â+π̂ as

Â+π̂ = π̂Â+ ⇒ Â+π̂
2 = π̂Â+π̂ ⇒ Â+I = Â+ = π̂Â+π̂

proves. This shows the unitary transformation of Â+ and this means that an even operator is one that
does not change under the unitary operator provided by the parity operator.

Because even operators commute with the parity operator it is always possible to find a common set of
eigenstates for these two operators. This means that the eigenstates of an even operator are either even
or odd states. More formally, from the eigenvalue equation Â+ |λ〉 = λ |λ〉 with |λ±〉 = P̂± |λ〉 such that
π̂ |λ±〉 = ± |λ±〉 and [Â+, P̂±] = [Â+,

1
2 (I± π̂)] = 0 follows

Â+ |λ±〉 = Â+P̂± |λ〉 = P̂±Â+ |λ〉 = λP̂± |λ〉 = λ |λ±〉

assuming that λ is non-degenerate. Thus, the parity eigenstates are also eigenstates of Â+, and the
eigenvalue in this case is λ. The eigenstates of an even operator have a definite parity. In the case
of degenerate eigenvalues, it is always possible to apply a transformation in this degenerate subspace
to obtain a new set of eigenstates that are also eigenstates of the parity operator as shown above for
compatible observables.

An odd operator Â− is defined by {Â−, π̂} = 0. An equivalent alternative definition for an odd operator
is Â− = −π̂Â−π̂ as

Â−π̂ = −π̂Â− ⇒ Â−π̂
2 = −π̂Â−π̂ ⇒ Â−I = Â− = −π̂Â−π̂

proves. Because odd operators do not commute with the parity operator they do not generally share a
common set of eigenstates. This means that other than in the case of even operators the eigenstates of
odd operators do not have a definite parity.

So far, the terms “even” and “odd” have been introduced for states and for operators. However, one
should not confuse these terms. Thus, to summarize, even operators are defined by [Â+, π̂] = 0 and their
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eigenstates are also eigenstates of the parity operator and are therefore either even or odd states. Odd
operators are defined by {Â−, π̂} = 0 and their eigenstates have no definite parity.

Many important physical systems have operators that are powers of even or odd operators. Thus, the
parity properties of powers of operators are needed. In the case of even operators using I = π̂2

π̂Ân+π̂ = π̂Â+IÂ+I...IÂ+π̂ = π̂Â+π̂π̂Â+π̂π̂...π̂π̂Â+π̂ = Ân+

shows Ân+ = π̂Ân+π̂ and Ân+ is therefore also an even operator. For odd operators a similar calculation

π̂Ân−π̂ = π̂Â−IÂ−I...IÂ−π̂ = π̂Â−π̂π̂Â−π̂π̂...π̂π̂Â−π̂ = (-1)nÂn−

shows that Ân− is an odd operator for n odd and an even operator for n even.

A general function F (Â) can be written in form of a power series as shown above. A function F (Â+) of an
even operator gives therefore also an even operator. The situation for functions of odd operators is a bit
more difficult because their power series usually contain even and odd powers. Thus, a function F (Â−) of
an odd operator has generally no definite parity. However, there are two special cases. If F (−x) = F (x)
as a function of real numbers, then F (Â−) is an even operator, and its power series contains only even
powers of Â−. Similarly, if F (−x) = −F (x) as a function of real numbers, then F (Â−) is an odd operator,
and its power series contains only odd powers of Â−.

Many operators in quantum mechanics happen to be either even or odd operators. The position operator
r̂ = (x̂, ŷ, ẑ) with the eigenvalue equation x̂ |x〉 = x |x〉 as an example component is an odd operator as

π̂x̂ |x〉 = xπ̂ |x〉 = x |-x〉 x̂π̂ |x〉 = x̂ |-x〉 = -x |-x〉 ⇒ (π̂x̂+ x̂π̂) |x〉 = {x̂, π̂} |x〉 = 0 ⇒ {x̂, π̂} = 0

proves since |x〉 is an arbitrary basis state. The same argument for ŷ and ẑ shows that {r̂, π̂} = 0. The
momentum operator satisfies {p̂, π̂} = 0 and is therefore also an odd operator.

More important are the even operators because they have definite parity. A very important operator is
the Hamiltonian Ĥ as it describes a physical system. It consists of two terms

Ĥ =
p̂2

2m
+ V (r̂)

where the kinetic energy is an even operator because it is an even power of an odd operator and the
potential energy is just a function of an odd operator without a definite parity. Thus, the Hamiltonian in
this general form has no definite parity. However, for even potentials the Hamiltonian is an even operator.
Examples of even potentials are the infinite square well potential and the quantum harmonic oscillator
both discussed below. The harmonic oscillator has the quadratic potential V (x) = 1

2mω
2x2, and that is

an even function in x. Also the hydrogen atom has an even potential.

3.5 Infinite Square Well Potential

One of the most iconic problems in quantum mechanics is the one-dimensional infinite square well po-
tential. The infinite square well potential describes a particle in a box. There are two reasons why
this problem is interesting. Firstly it is one of the few problems that can be solved exactly in quantum
mechanics, and secondly many more complicated problems such as electrons in atoms are essentially
electrons trapped in a potential well.

The Hamiltonian with the kinetic and the potential energie and the time independent Schrödinger equa-
tion as its eigenvalue equation are

Ĥ = − ~2

2m

d2

dx2
+ V (x) Ĥψ(x) = Eψ(x) − ~2

2m

d2

dx2
ψ(x) + V (x)ψ(x) = Eψ(x)

where ψ(x) is a wave function. The potential V (x) for the infinite square well is

V (x) =

{
0 for |x| < a

2

∞ for |x| > a
2

such that there are impenetrable walls at ±a2 . Thus, the wave function ψ(x) must
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(i) vanish outside where the potential is infinite such that ψ(x) = 0 for |x| > a
2

(ii) be continuous such that ψ(x) = 0 for x = ±a2
(iii) be determined mathematically for |x| < a

2

and the equation to be solved for the solution inside the well is

− ~2

2m

d2

dx2
ψ(x) = Eψ(x)

because the potential is zero.

This is a second order linear differential equation and one can always try the solution ei k x with the 2nd

derivation d2

dx2 (ei k x) = −k2ei k x. Inserting this into the eigenvalue equation gives

− h2

2m

(
−k2 ei k x

)
= E ei k x ⇒ k2 =

2mE

~2
⇒ k =

{
+
√
2mE
~ = +k

−
√
2mE
~ = −k

and the general solution together with the energy eigenvalues are

ψ(x) = Aei k x +B e−i k x E =
~2 k2

2m

with A,B ∈ C.

To go from the general solution to the specific solution of the problem one has to include the boundary
conditions. This gives

ψ
(

+
a

2

)
= 0 ⇒ Aei k a/2 +B e−i k a/2 = 0 ⇒ A = −B e−i k a

ψ
(
− a

2

)
= 0 ⇒ Ae−i k a/2 +B ei k a/2 = 0 ⇒ A = −B ei k a

such that e−i k a = ei k a and therefore 1 = ei 2π n = e2i k a for n ∈ Z. Thus, k is kn = π n
a and can only be

a multiple of π
a . The solution to the problem of this well potential is an oscillation, and only oscillations

where the number of oscillations exactly fit the well are solutions. Because the energy depends on k also
the energy can only take discrete values such that

En =
~2 k2n
2m

=
~2 π2 n2

2ma2
= ε n2 (3.2)

for n ∈ Z.

To get the wave functions the complex numbers A and B are needed and can be determined as

A = −B ei k a = −B ei π n = (−1)n+1B =

{
+B for odd n

−B for even n

and the wave function becomes

ψ(x) =

{
Aei k x +Ae−i k x = 2A cos(k x) = 2A cos

(
π nx
a

)
for odd n

Aei k x −Ae−i k x = 2iA sin(k x) = 2iA sin
(
π nx
a

)
for even n

for the still unknown A. This value can be determined since ψ(x) has to be normalized. This leads for
odd n to

1 =

∫ +∞

−∞
|ψ(x)|2 dx = 4|A|2

∫ +a/2

−a/2
cos2

(π nx
a

)
dx = 4|A|2

∫ +a/2

−a/2

1

2

(
1 + cos

(
2π nx

a

))
dx

= 2|A|2
([

x

]+a/2
−a/2

+
a

2π n

[
sin

(
2π nx

a

)]+a/2
−a/2

)
= 2|A|2

[
x

]+a/2
−a/2

= 2|A|2 a

with integration inside the well only because the wave function vanishes outside the well. Thus, |A|2 = 1
2a ,

and the phase choice A = 1√
2a

makes A a real number.
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The similar calculation for even n

1 =

∫ +∞

−∞
|ψ(x)|2 dx

gives the same result |A|2 = 1
2a but the phase choice sets A = − i√

2a
here such that 2iA becomes real,

and the final wave function becomes

ψn(x) =


√

2
a cos

(
π nx
a

)
for odd n√

2
a sin

(
π nx
a

)
for even n

(3.3)

where it is obvious that the eigenstates of the Hamiltonian have definite parity because the coordinates
have been chosen such that [Ĥ, π̂] = 0. The eigenstates ψn(x) for n = 1, ..., 6 is shown in figure 1.

Figure 1: The first six eigenstates for the infinite square well potential

The energy eigenvalues En in (3.2) have been written as En = ε n2 where ε is a constant. The energy
levels for n = 1, 2, 3, ... are E1 = ε, E2 = 4 ε and E3 = 9 ε and so on, and the jumps from En to En+1

become bigger and bigger because of the factor n2.

3.6 Time Evolution After a Quantum Measurement

The dynamics of a quantum system is governed by the Schrödinger equation

i ~
∂

∂t
ψ(x, t) = − ~2

2m

∂2

∂x2
ψ(x, t) + V (x)ψ(x, t)

which is here written in the position representation for the one-dimensional case. When the potential
V (x) is independent of time then the dynamics of the system takes a particularly simple form. The system
at time t = 0 is ψ(x, 0) =

∑
n cn(0)ψn(x) for the eigenstates Ĥψn(x) = Enψn(x) of the Hamiltonian,

and the system at time t > 0 is ψ(x, t) =
∑
n cn(t)ψn(x) where cn(t) = cn(0) e−i En t/~. If the state is

an eigenstate of the Hamiltonian then only a single term appears in the sum and the time dependence
becomes trivial because ψ(x, t) = cj(t)ψj(x) = c(0) e−i En t/~ ψj(x). The relevant information about the

system is given by |ψ(x, t)|2 = ψ∗(x, t)ψ(x, t) = |cj(0)|2|ψj(x)|2 where the time dependent exponents
vanished, and these states are called stationary states because they are time independent.

If there is more than one non-zero term in this sum for ψ(x, t) then one can follow the steps

(1) solve the eigenvalue equation Ĥψn(x) = Enψn(x) to get En and ψn(x)
(2) expand ψ(x, 0) in the basis {ψn(x)} of eigenstates
(3) construct ψ(x, t) by building the coefficients {cn(t)}

and this recipe is in the following applied to the infinite square well potential discussed above. For the
first step the eigenvalues and eigenstates have been determined and are shown in (3.2) and (3.3).
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To show the time evolution the superposition of two energy eigenstates

ψ(x, 0) =
1√
2

(ψj(x) + ψk(x)) cj(0) = ck(0) =
1√
2

is used as the initial wave function. The wave function at time t is

ψ(x, t) =
1√
2

(
ψj(x) e−i Ej t/~ + ψk(x) e−i Ek t/~

)
and to get |ψ(x, t)|2 one can multiply ψ(x, t) by a global phase

ei Ej t/~ψ(x, t) =
1√
2

(
ψj(x) + ψk(x) e−i (Ek−Ej) t/~

)
isolating the time dependence in one term. Thus,

|ψ(x, t)|2 = ψ∗(x, t)ψ(x, t)

=
1

2

(
|ψj(x)|2 + |ψk(x)|2 + ψ∗j (x)ψk(x) e−i (Ek−Ej) t/~ + ψ∗k(x)ψj(x) ei (Ek−Ej) t/~

)
has four terms where the first two are time independent and the cross-terms capture the time dependence.
Because ψn(t) ∈ R such that ψ∗n(t) = ψn(t) the cross-terms can be combined and

|ψ(x, t)|2 =
1

2

(
|ψj(x)|2 + |ψk(x)|2 + 2ψj(x)ψk(x) cos

(
(Ek − Ej)t

~

))
has only one time dependent cross-term. The frequency at which the cosine oscillates is given by the
energy difference (Ek − Ej)/~. The cross-term is called the mixing term, and it allows more interesting
dynamics than those of the stationary states.

The figure on the left side shows the three terms
|ψ1(x)|2, |ψ2(x)|2, 2ψ1(x)ψ2(x) where ψ1(x) and
ψ2(x) are also drawn in the first two graphs and
the third graph illustrates the cross-term at t = 0.
The third graph actually oscillates with frequency
ω = (Ek − Ej)/~.

If one adds the three terms together one gets the graph in the figure on the right side.
This shows the situation at 2πn/ω for n ∈ Z because the period of 2ψ1(x)ψ2(x) cos(ωt)
is T = 2π/ω.

One can get an impression of the oscillation by looking at the
cross-term and the sum for t = 1

2T as illustrated in the figure on
the left side. The first two terms are time independent and stay
therefore the same and the cross-term together with the sum are
mirrored about the vertical axis corresponding to the middle of
the well leading to the dashed lines. The high peak on the right

side of the sum has decreased in size and the small peak on the left side has increased in size. A smooth
change in time makes the two peaks therefore oscillate at a frequency ω.

The illustration on the right side shows two cases of a superpo-
sition 1√

2
(ψj(x) + ψk(x)). The left graph with j = 1 and k = 2

as in the above graphics is compared with the right graph with
j = 1 and k = 20. Because of ω ∝ Ek − Ej and En ∝ n2 the
energy of the oscillation in the right graph is much higher than
the energy of the oscillation in the left graph.

From the system that mixes two energy levels one can now look
at the more general problem of a mixture of many energy levels
by examining the time evolution after a position measurement.
The position measurement collapses the wave function to a single
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point in space where the particle is measured to be. Thus, the initial wave function is ψ(x, 0) = δ(x−x0)
where x0 is the position in space where the particle has been measured to be. However, the delta function
is not normalizable, and it is not a valid wave function belonging to the Hilbert space. Thus, saying that
the particle is at x0 means that it is in a small region centered at x0. One writes ∆(x − x0) which is a
function that peaks at x0 but has a finite width. This makes the function normalizable and therefore a
proper wave function in the Hilbert space.

Still using the delta function gives

ψ(x, 0) =
∑
n

cn(0)ψn(x) cn(0) =

∫ +∞

−∞
ψn(x)ψ(x, 0)dx =

∫ +∞

−∞
ψn(x)δ(x− x0) dx = ψn(x0)

for the initial wave function and

ψ(x, t) =
∑
n

cn(0) e−i En t/~ ψn(x) =
∑
n

ψn(x0) e−i En t/~ ψn(x)

for the wave function evolving in time where ψn(x0) is a constant and ψn(x) is a function of x. To replace
ψ(x, 0) = δ(x− x0) by ∆(x− x0) all one has to do from a numerical point of view is to truncate the sum
over n to some finite number of terms. This gives a properly normalizable wave function. The reason why
one obtains a finite width by truncating the sum is that there is no longer the destructive interference
working in the case of the delta function.

Because at a time t1 > 0 each basis function oscillates at a different frequency ωn = En/~, this will
break further the destructive interference that led to the very localized wave function at the beginning.
This means that the probability distribution of the overall wave function will spread. At much later
times t∞ the initial coherence to localize the state at a single point will be completely destroyed, and the
probability distribution for the wave function will become more or less flat.

Figure 2: Three |ψ(x, tj)|2 for wave function with t0 < t1 < t2 for the infinite square well

The three graphs in figure 2 illustrate the time evolution of the probability distribution for the overall
wave function ψ(x, t). At time t0 = 0 the initial probability distribution for ψ(x, 0) = ∆(x − x0) shown
in the left graph is centered at x0 and is very narrow. At a later time t1 the probability distribution in
the middle starts spreading and gets wider, and at time t2 in the graph on the right side the probability
distribution hits the right wall. In the end at t = ∞ the particle can be anywhere in the well and the
probability distribution is completely flat.

Comparing classical mechanics with quantum mechanics shows the difference clearly. At t = 0 the
particle is exactly at x0 classically but is only around x0 ≈ ∆(x − x0) in quantum mechanics. At t > 0
Newton’s laws tell that the particle is exactly at x(t) in classical physics while time evolution is governed
by Schrödinger’s equation in quantum mechanics and gives only the wave function ψ(x, t) stating the

probability P (x, t)dx = |ψ(x, t)|2dx of the particle being in (x, x+ dx) at time t if one measures it again.
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